
CONCURRENT SYSTEMS
LECTURE 9
Prof. Daniele Gorla

Universal Object
Given objects of type T and an object of type Z, is it possible to wait-free implement Z by using only
objects of type T and atomic R/W registers?

The type of an object is
1. The set of all possible values for states of objects of that type
2. A set of operations for manipulating the object, each provided with a specification, i.e. a

description of the conditions under which the operation can be invoked and the effect of the
invocation

Here, we focus on types whose operations are
• Total : all operations can be invoked in any state of the object
• Sequentially specified: given the initial state of an obj, the behaviour depends only by the sequence

of operations, where the output to every op. invocation only depends on the input arguments and
the invocations preceding it.

 à formally, 𝛿(s, op(args)) = {⟨s1,res1⟩,…, ⟨sk,resk⟩}
 à it is deterministic whenever k=1, for every s and every op(args)

An object of type TU is universal if every other object can be wait-free implemented by using only
onjects of type TU and atomic R/W registers.

2

Consensus object
A consensus object is a one-shot object (i.e., an object such that any process can

access it at most once) whose type has only one operation propose(v) such that:
1. (Validity) The returned value (also called the decided value) is one of the

arguments of the propose (i.e., a proposed value) in one invocation done by a
process (also called a participant)

2. (Integrity) every process decides at most once
3. (Agreement) The decided value is the same for all processes
4. (Wait-freedom) every invocation of propose by a correct process terminates

Conceptually, we can implement a consensus object by a register X, initialized at ⊥,
for which the propose operation is atomically defined as
 propose(v) := if X = ⊥ then X ß v
 return X

Universality of consensus holds as follows:
• Given an object O of type Z
• Each participant runs a local copy of O, all initialized at the same value
• Create a total order on the operations on O, by using consensus objects
• Force all processes to follow this order to locally simulate O
 à all local copies are consistent

3

First attempt (not wait-free)
Let us first concentrate on obj’s with deterministic specifications (we will see how to

handle non-determinism later on)

Process pi that wants to invoke operation op of obj Z with arguments args locally runs:
 resulti ß ⊥
 invoci ß ⟨op(args) , i⟩
 wait resulti ≠ ⊥
 return resulti

Every process locally runs also a simulation of Z (stored in the local var zi) s.t.
• zi is initialized at the initial value of Z
• every process performs on zi all the operations performed on Z by all processes, in

the same order
 à need of consensus

4

First attempt (not wait-free)
Let CONS be an unbounded array of consensus ojects and 𝜋1 and 𝜋2 respectively

denote the first and the second element of a given pair (aka the first and second
projection)

The local simulation of Z by pi is

 k ß 0
 zi ß Z.init()
 while true
 if invoci ≠ ⊥ then
 k++
 execi ß CONS[k].propose(invoci)
 ⟨zi , res⟩ ß 𝛿(zi , 𝜋1(execi))
 if 𝜋2(execi) = i then
 invoci ß ⊥
 resulti ß res

This solution is non-blocking but not wait-free
5

A wait-free construction
LAST_OP[1..n] : array of SWMR atomic R/W registers containing pairs init at ⟨⊥,0⟩ ∀i
last_sni[1..n] : local array of the last op by pj executed by pi init at 0 ∀i,j

op(arg) by pi on Z local simulation of Z by pi
 resulti ß ⊥ k ß 0
 LAST_OP[i] ß ⟨op(args), zi ß Z.init()
 last_sni[i]+1⟩ while true
 wait resulti ≠ ⊥ invoci ß 𝜀
 return resulti ∀ j = 1..n
 if 𝜋2(LAST_OP[j])>last_sni[j]
 then invoci.append(
 ⟨𝜋1(LAST_OP[j]),j⟩)
 if invoci ≠ 𝜀 then
 k++
 execißCONS[k].propose(invoci)
 for r=1 to |execi|
 ⟨zi,res⟩ ß 𝛿(zi,𝜋1(execi[r]))
 j ß 𝜋2(execi[r])
 last_sni[j]++
 if i=j then resultißres

6

Lemma1: the construction is wait free

Proof:
Let pi invoke Z.op(par); to prove the Lemma, we need to show that eventually resulti ≠ ⊥

It suffices to prove that ∃ k s.t. CONS[k].propose(-) returns a list that contains
 ⟨“op(par)”,i⟩ and pi participates to the consensus:

a) Since pi increases the seq.numb. of LAST_OP[i], eventually all lists proposed
contain that element forever

b) Eventually, pi will always find invoci ≠ ε and partecipates with an increasing
sequence number ki

c) Let k be the first consensus where (a) holds
d) By the properties of consensus, execi contains ⟨“op(par)”,i⟩

Lemma2: all operations invoked by processes are executed exactly once.
Proof:
As shown before, every invocation is executed; we have to show that this cannot
happen more than once.

If pi has inserted ⟨“op(par)”,sn⟩ in LAST_OP[i], it cannot invoke another operation
until ⟨“op(par)”,sn⟩ appears in a list chosen by the consensus
 à the seq.numb. of LAST_OP[i] can increase only after ⟨“op(par)”,sn⟩ has
 been executed

Let k be the minimum such that CONS[k] contains ⟨“op(par)”,i⟩

Every pj that partecipate in the k-th consensus increases last_snj[i] before calculating a
new proposal invocj
 à if π2(LAST_OP[i]) is not changed, then the guard of the IF is false
 and ⟨“op(par)”,i⟩ is not appended in invocj
 à otherwise, we have a new invocation from pi (but this can only happen
 after that ⟨“op(par)”,sn⟩ has been executed)

Lemma3: the local copies si of all correct processes behave the same and comply
with the sequential specification of Z.

Proof:
• The processes use CONS in the same order (CONS[1], CONS[2], …)
• Every consensus object returns the same list to all processes
• All processes scan the returned list from head to tail
 à they apply the same sequence of op.’s to their local copies (that started
 from the same initial value)
 à everything works because of determinism!

REMARK: bounded wait freedom does NOT hold:
 à if the background process suspends for a long time, when it wakes up
 it has an unbounded number of agreed lists to locally execute
 à this may arbitrarily delay an operation issued before the sleep

Solution for non-deterministic spec.’s
If the specifications of Z’s operations are non-deterministic, then 𝛿 does not return one

single possible pair after one invocation, but a set of possible choices.
How to force every process to run the very same sequence of operations on their local

simulations?

1. Brute force solution: for every pair ⟨s , op(args)⟩, fix a priori one element of
 𝛿(⟨s , op(args)⟩) to be chosen

 à «cancelling» non-determinism

2. Additional consensus objects, one for every element of every list

3. Reuse the same consensus object: for all k, CONS[k] not only chooses the list of
invocations, but also the final state of every invocation

 à the proposals should also pre-calculate the next state and propose one

10

Binary vs Multivalued Consensus
Binary consensus: just 2 possible proposals (say, 0 and 1)
 rounds

Multivalued consensus (with unbounded values)

IDEA:
• we have n processes and n binary processes
 consensus rounds;
• at round k, all processes propose 1 if pk has
 proposed something, 0 otherwise.
• If the decided value is 1, then decide pk’s proposal; otherwise, go to the next round.

PROP[1..n] array of n proposals, all init at ⊥
BC[1..n] array of n binary consensus objects
mv_propose(i,v) :=
 PROP[i] ß v
 for k=1 to n do
 if PROP[k] ≠ ⊥ then res ß BC[k].propose(1)
 else res ß BC[k].propose(0)
 if res = 1 then return PROP[k]
 wait forever

11

1 2 … k … n

1 ⋱

2 ⋱

… ⋱

k ○
… ⋱

n ⋱

Binary vs Multivalued Consensus

Validity, Agreement, Integrity, Termination:
• Let px the first process that writes a proposal
• every pi that participates to the consensus reads the other proposals after that it

has written PROP[i]
 à all participants start their for loops after that px has written its proposal
• every pi that participates to the consensus finds PROP[x] ≠ ⊥ in their for loop
• BC[x] only receives proposals equal to 1
• Because of validity of binary consensus, BC[x] returns 1
• every pi that participates to the consensus receives 1 at most in its x-th iteration of

the for
• Let y (≤ x) be the first index such that BC[y] returns 1
 à BC[z] = 0 for all z < y
• Since all participating processes invoke the binary consensus in the same order,

they all decide the value proposed by py and terminate
12

Binary vs Bounded Multivalued Consensus

Multivalued consensus (with bounded values)

Let k be the number of possible proposals and h = 𝑙𝑜𝑔!	𝑘 be the number of bits needed
to binary represent them (this value is known to all processes).

 à IDEA: decide bit by bit the final outcome

PROP[1..n][1..h] array of n h-bits proposals, all init at ⊥
BC[1..h] array of h binary consensus objects

bmv_propose(i,v) :=
 PROP[i] ß binary_reprh(v)
 for k=1 to h do
 P ß {PROP[j][k] | PROP[j]≠⊥ ∧ PROP[j][1..k-1]=res[1..k-1]}
 let b be an element of P
 res[k] ß BC[k].propose(b)
 return value(res) 13

Binary vs Bounded Multivalued Consensus
• Wait freedom: trivial
• Integrity: trivial
• Agreement: by agreement of the h binary consensus objects
• Validity: for all k, we prove that, if dec is the decided value, then there exists a j such that pj is

partecipating (i.e., PROP[j] ≠ ⊥) and dec[1..k] = PROP[j][1..k]
 à By construction, P contains the k-th bits of the proposals whose first (k-1) bits coincide
 with the first k-1 bits decided so far:
 for every b ∈ P, there exists a j such that PROP[j] ≠ ⊥ ,
 PROP[j][1..k-1] = dec[1..k-1] and PROP[j][k] = b
 à whatever b ∈ P is selected in the k-th binary consensus, there exists a j such that
 PROP[j] ≠ ⊥ and PROP[j][1..k] = dec[1..k]
 à by taking k = h, we can conclude.

14

