DIPARTIMENTO DI INFORMATICA

CONCURRENT SYSTEMS
LECTURE 15

Prof. Daniele Gorla

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Logics for System’s Properties

(In)equivalences between systems hold because of different properties of the systems
themselves

Logics = a formal way to express these properties

Satisfiability relation states when a process satisfies a property

Enjoying the same properties coincides with being bisimilar

DIPARTIMENTO DI INFORMATICA

Example: o 1 o P
/ \ Y
L ® L
b b
Y Y
®]

These two proc’s are NOT bisimilar because
* PI can perform an action a not followed by any b
* P2, after every a, can always perform an action b

N
N0 b

Example: F

a

oO<——0

These two proc’s are NOT bisimilar because

* P1 can perform an action a and then choose between b and ¢
* P2 can perform an a not followed by any b and an a not followed by an_

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Syntax and Satisfiability

@ = TT | - | p Ap | ©ap where a € Action

The language generated by this grammar will be denoted by Form; every element of this
set will be called formula

Let = C Proc x Form be a relation between processes and formulae.

process P satisfies formula @, and write P = ¢, if and only if (P,) € E,

relation = can be inductively defined PETT
PE-pif PHyp
PEpoiANp2 if PEp; A PE 2
PEoap if3P': P3P A PEyp

To simplify the proofs, we consider a more general form of conjunction: N\ ©;
where 7 1s any indexing set (possibly, also infinite).

Satisfiability for this operator is similar to that for the binary operator. -

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Of course, we can use the boolean constant FALSE (written FF) and classical
logical operators like disjunction V and implication = (they can all be derived
in the usual way from TT, — and A).

Another very useful logical operator is ‘box’: let us define — ¢ ap as Ua—yp
PFEUap iff PE~oa—~yp iff PH#oayp iff
tP':PS P AP E-@ifVP' :P5P Vv PEgy

From the last condition, we have that P = [ay if and only if

VP : P& P = PEgy

EXAMPLE: Letus now consider formula [laFF

By definition, this happens only if, for every P’ resulting from P after action a, it holds P’ |= FF

However, this can never happen, whatever P’ be;

hence, P |= [1aFF holds true only if P cannot perform any action a A

s 3 OAPTENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

o P
° . © = oaJbFF
Yb We have that P, F ¢ whereas P, ¥ .
®
Py

Oa o bTT 0a(obTT A ocTT)
These formulae are both satisfied by P; but not by P..

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Let us now define the set of formulae satisfied by a process as
L(P)={p € Form: P |= ¢}

To simplify the proof, let us modify the set of formulae by allowing conjunctions over a
numerable set of formulae

Theorem: P ~ Q if and only if L(P) = L(Q)

(=>) By induction on the syntax tree of the formula, let us show that
@EL(P) iff p€L(Q)

Base case: The only possible case is with ¢ = TT.

* By the satisfiability relation, ¢ belongs to the set of formulae of every process

* so also to L(P) and L(Q)

s 3 OAPTENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Inductive step: Let us assume the thesis for every tree of height at most h. Let h + 1 be
the height of ¢. Let us distinguish on the outmost operator in ¢

1. ¢ £ \;c; pi- Let us assume that ¢ € L(P); by definition,
€ LP) <= PEyp <= Yiecl PEyp; <= Vi€l yp; € L(P)

By definition, every formula ¢; has a syntactic tree of height at most h;
hence, by inductive hypothesis, @; € L(P) <= ¢; € L(Q). From this,

Vielpie L(Q) <= VieIQEp: <= N\pi€L(Q) <= < L(Q)

ict

2. ¢ = ', In this case, ¢ € L(P) iff ~¢’ € L(P) iff ¢’ & L(P). The height
of the syntax tree for ¢’ is h; by inductive hypothesis,

¢ € L(P) <= ¢' ¢ L(Q) <= '€ L(Q)

=

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

3. ¢ £ oay’. We now have ¢ € L(P)iff 3P’ : P 5 P' A P’ = ¢'; the last
condition is equivalent to ¢’ € L(P’).

By hypothesis, P ~ Q; hence, 3Q": Q > Q' A P' ~ Q.

Because the height of the syntax tree for ¢’ is h, by inductive hypothesis
we have that ¢’ € L(Q").

By definition, this entails that Q' F ¢’ and so @ = ¢ayp’ = .

Up to now, we have proved that ¢ € L(P) = ¢ € L(Q). To complete the
proof, we have to prove the converse implication; this can be easily done
by swapping P and Q.

=

SAPIENZA

QU UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

(<) We prove that R £ {(P,Q) : L(P) = L(Q)} is a simulation; this suffices,
since the relation just defined is trivially symmetric.
Let (P,Q) € R and P % P’. Let us consider

@ = oayp’ where ' £ /\ @'
o EL(P')

By construction, P E ¢, hence Q E ¢, because L(Q) = L(P); then, 3Q' : Q =
@’ such that Q' F ¢'.

Hence, V" € L(P').¢" € L(Q'), i.e. L(P") C L(Q")

By contradiction, let us assume that the inclusion is proper, i.e. L(P’") C L(Q').
Thus, 3¢ : ¢ € L(Q') N ¢ & L(P').

Then, ~¢% € L(P’) and this would imply that -~% € L(Q'). This is a
contradiction because L(Q') cannot contain a formula and its negation. O

=

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

The Logic approach presented so far is very natural for proving inequivalences:
* Show one formula that is satisfied by a proc but not by the other

It 1s not very effective for concretely proving equivalences:
* E.g., to show that P ~ Q, we should check that every formula in L(P) belongs to

L(Q) and conversely.
* The problem is that L(P) is infinite, for every P: it contains TT, TTATT,
TTATTATT, ...
* Even if we restrict to logical equivalence class, the situation does not change.
 EXAMPLE: consider process P2: o P>
« it satisfies LIbFF, [1cFF, L1dFF,
* so L(P2) is infinite because so is the action set :
b
Y
o

i

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Sub-Logics
A negation-free logic Let us first consider the sub-logic without negation:

@ = TT | @ Ap | ©ap where a € Action

Remark: the formula [1aFF is not expressible anymore.
—> Hence, we can only express through formulae what a process is able to do.

Let us call L_(P) the set of negation-free formulae satisfied by process P

Theorem: P simulates Q if and only 1f L_(Q) € L_(P).
Proof. The proof is similar to the one for the previous Theorem.

The main difference is in the (<) implication, when ¢ = ¢a@’, because here we do not
prove that the inclusion cannot be proper (indeed, in general it is not).

An easy corollary of this result is that there is a double simulation between P and Q 1f and
only if L.(P) = L_(Q). P

Py
Example: it can be checked that / \)
L_(P2)=L_(P1) . . Y
b

indeed, P1 can simulate P2 and viceversa, b
Y Y
but the simulations are not bisimulations. * * ‘

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

A negation- and conjunction-free logic To conclude, let us consider the
sub-logic obtained by also removing conjunction:

@ = TT | oap where a € Action
Let us call L, —(P) the set of formulae of this sub-logic satisfied by process P

Let us also call Lang(P) the set of strings accepted by the automaton isomorphic to the LTS
of P in which every state is final

Theorem: L, (P) =L, -(Q) if and only 1f Lang(Q) = Lang(P).
Proof. Leto=v9a;,...,%a,TT € L,(P).

By definition, this holds if and only if 3P;,...,P, such that P —a;— P, ... —-a,—> P,
hence, if and only if a,,...,a, € Lang(P).

In concurrency theory, when two processes have the same language, they are called trace
equivalent, where a trace is any sequence of actions performed by the process.

It is easy to see that the set of traces of a process P 1s Lang(P) « B .
EXAMPLE: P1 and P2 are trace equivalent i / \
they satisfy the same set of formulae of the sub-logic / \ ib

without negation and conjunction.

DIPARTIMENTO DI INFORMATICA

A Logic for Weak Bisimilarity

The logic that characterizes weak bisimilarity is very similar to the logic for
strong bisimilarity:

@ = TT | ~p | o Ay | «=ap where a € Action
The only difference is in the diamond operator ¢a, that here is turned into <=a.

This is very similar to the difference between the definition of weak and strong
simulation, where the former is obtained from the latter by replacing “—” with

« Ly Satisfiability of this new operator is expectable:

PE<sapiff3P' :P=P A P Ey

