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Logics for System’s Properties

(In)equivalences between systems hold because of different properties of the systems
themselves

Logics = a formal way to express these properties

Satisfiability relation states when a process satisfies a property

Enjoying the same properties coincides with being bisimilar
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Example: o 1 o P
/ \ Y
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b b
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These two proc’s are NOT bisimilar because
* PI can perform an action a not followed by any b
* P2, after every a, can always perform an action b

N
N0 b

Example: F

a

oO<——0

These two proc’s are NOT bisimilar because

* P1 can perform an action a and then choose between b and ¢
* P2 can perform an a not followed by any b and an a not followed by an_
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Syntax and Satisfiability

@ = TT | - | p Ap | ©ap where a € Action

The language generated by this grammar will be denoted by Form; every element of this
set will be called formula

Let = C Proc x Form be a relation between processes and formulae.

process P satisfies formula @, and write P = ¢, if and only if (P, ) € E,

relation = can be inductively defined PETT
PE-pif PHyp
PEpoiANp2 if PEp; A PE 2
PEoap if3P': P3P A PEyp

To simplify the proofs, we consider a more general form of conjunction: N\ ©;
where 7 1s any indexing set (possibly, also infinite).

Satisfiability for this operator is similar to that for the binary operator. -
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Of course, we can use the boolean constant FALSE (written FF) and classical
logical operators like disjunction V and implication = (they can all be derived
in the usual way from TT, — and A).

Another very useful logical operator is ‘box’: let us define — ¢ ap as Ua—yp
PFEUap iff PE~oa—~yp iff PH#oayp iff
tP':PS P AP E-@ifVP' :P5P Vv PEgy

From the last condition, we have that P = [ay if and only if

VP : P& P = PEgy

EXAMPLE: Letus now consider formula [laFF

By definition, this happens only if, for every P’ resulting from P after action a, it holds P’ |= FF

However, this can never happen, whatever P’ be;

hence, P |= [1aFF holds true only if P cannot perform any action a A
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o P
° . © = oaJbFF
Yb We have that P, F ¢ whereas P, ¥ .
®
Py

Oa o bTT 0a(obTT A ocTT)
These formulae are both satisfied by P; but not by P..
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Let us now define the set of formulae satisfied by a process as
L(P)={p € Form: P |= ¢}

To simplify the proof, let us modify the set of formulae by allowing conjunctions over a
numerable set of formulae

Theorem: P ~ Q if and only if L(P) = L(Q)

(=>) By induction on the syntax tree of the formula, let us show that
@EL(P) iff p€L(Q)

Base case: The only possible case is with ¢ = TT.

* By the satisfiability relation, ¢ belongs to the set of formulae of every process

* so also to L(P) and L(Q)
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Inductive step: Let us assume the thesis for every tree of height at most h. Let h + 1 be
the height of ¢. Let us distinguish on the outmost operator in ¢

1. ¢ £ \;c; pi- Let us assume that ¢ € L(P); by definition,
€ LP) <= PEyp <= Yiecl PEyp; <= Vi€l yp; € L(P)

By definition, every formula ¢; has a syntactic tree of height at most h;
hence, by inductive hypothesis, @; € L(P) <= ¢; € L(Q). From this,

Vielpie L(Q) <= VieIQEp: <= N\pi€L(Q) <= < L(Q)

ict

2. ¢ = ', In this case, ¢ € L(P) iff ~¢’ € L(P) iff ¢’ & L(P). The height
of the syntax tree for ¢’ is h; by inductive hypothesis,

¢ € L(P) <= ¢' ¢ L(Q) <= '€ L(Q)

=
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3. ¢ £ oay’. We now have ¢ € L(P)iff 3P’ : P 5 P' A P’ = ¢'; the last
condition is equivalent to ¢’ € L(P’).

By hypothesis, P ~ Q; hence, 3Q": Q > Q' A P' ~ Q.

Because the height of the syntax tree for ¢’ is h, by inductive hypothesis
we have that ¢’ € L(Q").

By definition, this entails that Q' F ¢’ and so @ = ¢ayp’ = .

Up to now, we have proved that ¢ € L(P) = ¢ € L(Q). To complete the
proof, we have to prove the converse implication; this can be easily done
by swapping P and Q.

=
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(<) We prove that R £ {(P,Q) : L(P) = L(Q)} is a simulation; this suffices,
since the relation just defined is trivially symmetric.
Let (P,Q) € R and P % P’. Let us consider

@ = oayp’ where ' £ /\ @'
o EL(P')

By construction, P E ¢, hence Q E ¢, because L(Q) = L(P); then, 3Q' : Q =
@’ such that Q' F ¢'.

Hence, V" € L(P').¢" € L(Q'), i.e. L(P") C L(Q")

By contradiction, let us assume that the inclusion is proper, i.e. L(P’") C L(Q').
Thus, 3¢ : ¢ € L(Q') N ¢ & L(P').

Then, ~¢% € L(P’) and this would imply that -~% € L(Q'). This is a
contradiction because L(Q') cannot contain a formula and its negation. O

=
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The Logic approach presented so far is very natural for proving inequivalences:
* Show one formula that is satisfied by a proc but not by the other

It 1s not very effective for concretely proving equivalences:
* E.g., to show that P ~ Q, we should check that every formula in L(P) belongs to

L(Q) and conversely.
* The problem is that L(P) is infinite, for every P: it contains TT, TTATT,
TTATTATT, ...
* Even if we restrict to logical equivalence class, the situation does not change.
 EXAMPLE: consider process P2: o P>
« it satisfies LIbFF, [1cFF, L1dFF, ... .
* so L(P2) is infinite because so is the action set :
b
Y
o

i
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Sub-Logics
A negation-free logic Let us first consider the sub-logic without negation:

@ = TT | @ Ap | ©ap where a € Action

Remark: the formula [1aFF is not expressible anymore.
—> Hence, we can only express through formulae what a process is able to do.

Let us call L_(P) the set of negation-free formulae satisfied by process P

Theorem: P simulates Q if and only 1f L_(Q) € L_(P).
Proof. The proof is similar to the one for the previous Theorem.

The main difference is in the (<) implication, when ¢ = ¢a@’, because here we do not
prove that the inclusion cannot be proper (indeed, in general it is not).

An easy corollary of this result is that there is a double simulation between P and Q 1f and
only if L.(P) = L_(Q). P

Py
Example: it can be checked that / \ )
L_(P2)=L_(P1) . . Y
b

indeed, P1 can simulate P2 and viceversa, b
Y Y
but the simulations are not bisimulations. * * ‘
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A negation- and conjunction-free logic To conclude, let us consider the
sub-logic obtained by also removing conjunction:

@ = TT | oap where a € Action
Let us call L, —(P) the set of formulae of this sub-logic satisfied by process P

Let us also call Lang(P ) the set of strings accepted by the automaton isomorphic to the LTS
of P in which every state is final

Theorem: L, (P) =L, -(Q) if and only 1f Lang(Q) = Lang(P).
Proof. Leto=v9a;,...,%a,TT € L,(P).

By definition, this holds if and only if 3P;,...,P, such that P —a;— P, ... —-a,—> P,
hence, if and only if a,,...,a, € Lang(P).

In concurrency theory, when two processes have the same language, they are called trace
equivalent, where a trace is any sequence of actions performed by the process.

It is easy to see that the set of traces of a process P 1s Lang(P) « B .
EXAMPLE: P1 and P2 are trace equivalent i / \
they satisfy the same set of formulae of the sub-logic / \ ib

without negation and conjunction.
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A Logic for Weak Bisimilarity

The logic that characterizes weak bisimilarity is very similar to the logic for
strong bisimilarity:

@ = TT | ~p | o Ay | «=ap where a € Action
The only difference is in the diamond operator ¢a, that here is turned into <=a.

This is very similar to the difference between the definition of weak and strong
simulation, where the former is obtained from the latter by replacing “—” with

« Ly Satisfiability of this new operator is expectable:

PE<sapiff3P' :P=P A P Ey




