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Logics for System’s Properties
(In)equivalences between systems hold because of different properties of the systems 

themselves

Logics = a formal way to express these properties 

Satisfiability relation states when a process satisfies a property

Enjoying the same properties coincides with being bisimilar



Example:

 These two proc’s are NOT bisimilar because
• P1 can perform an action a not followed by any b 
• P2, after every a, can always perform an action b 

Example:

 These two proc’s are NOT bisimilar because
• P1 can perform an action a and then choose between b and c 
• P2 can perform an a not followed by any b and an a not followed by any c 



Syntax and Satisfiability

The language generated by this grammar will be denoted by Form; every element of this 
set will be called formula

To simplify the proofs, we consider a more general form of conjunction: ∧i∈I 𝜑i
where I is any indexing set (possibly, also infinite).
Satisfiability for this operator is similar to that for the binary operator.



EXAMPLE:   Let us now consider formula  ☐aFF

By definition, this happens only if, for every P’ resulting from P after action a, it holds P’  |=  FF

However, this can never happen, whatever P’ be; 

hence, P |= ☐aFF holds true only if P cannot perform any action a





Let us now define the set of formulae satisfied by a process as 
   L(P) = {φ ∈ Form : P  |=  φ} 

To simplify the proof, let us modify the set of formulae by allowing conjunctions over a 
numerable set of formulae

Theorem: P ~ Q if and only if L(P) = L(Q)

(=>) By induction on the syntax tree of the formula, let us show that 
  φ∈L(P) iff φ∈L(Q) 

Base case: The only possible case is with φ = TT. 
• By the satisfiability relation, φ belongs to the set of formulae of every process
• so also to L(P) and L(Q)



Inductive step: Let us assume the thesis for every tree of height at most h. Let h + 1 be 
the height of φ. Let us distinguish on the outmost operator in φ 







The Logic approach presented so far is very natural for proving inequivalences:
• Show one formula that is satisfied by a proc but not by the other

It is not very effective for concretely proving equivalences:
• E.g., to show that P ∼ Q, we should check that every formula in L(P) belongs to 

L(Q) and conversely. 
• The problem is that L(P) is infinite, for every P: it contains TT, TT∧TT, 

TT∧TT∧TT, … 
• Even if we restrict to logical equivalence class, the situation does not change. 
• EXAMPLE: consider process P2: 

• it satisfies ☐bFF, ☐cFF, ☐dFF, ...
• so L(P2) is infinite because so is the action set



Sub-Logics

Remark: the formula ☐aFF is not expressible anymore. 
   à Hence, we can only express through formulae what a process is able to do. 
Let us call L¬(P) the set of negation-free formulae satisfied by process P

Theorem: P simulates Q if and only if L¬(Q) ⊆ L¬(P). 
Proof. The proof is similar to the one for the previous Theorem. 
The main difference is in the (⇐) implication, when φ = ⋄aφ′, because here we do not 
prove that the inclusion cannot be proper (indeed, in general it is not). 

An easy corollary of this result is that there is a double simulation between P and Q if and 
only if L¬(P) = L¬(Q).

Example: it can be checked that 
 L¬(P2) = L¬(P1)
      indeed, P1 can simulate P2 and viceversa, 
      but the simulations are not bisimulations. 



Let us call L∧, ¬(P) the set of formulae of this sub-logic satisfied by process P
Let us also call Lang(P ) the set of strings accepted by the automaton isomorphic to the LTS 

of P in which every state is final

Theorem: L∧,¬(P) = L∧,¬(Q) if and only if Lang(Q) = Lang(P).
Proof. Let φ = ⋄a1, . . . , ⋄anTT ∈ L∧,¬(P ). 
By definition, this holds if and only if ∃P1,...,Pn such that P –a1–> P1 ... –an–> Pn 
hence, if and only if a1,...,an ∈ Lang(P). 

In concurrency theory, when two processes have the same language, they are called trace 
equivalent, where a trace is any sequence of actions performed by the process. 

It is easy to see that the set of traces of a process P is Lang(P)
EXAMPLE: P1 and P2 are trace equivalent 
 they satisfy the same set of formulae of the sub-logic 
 without negation and conjunction. 



A Logic for Weak Bisimilarity 


