DIPARTIMENTO DI INFORMATICA

CONCURRENT SYSTEMS
LECTURE 14

Prof. Daniele Gorla




An inference system for checking bisimilarity
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We shall only consider finite processes (processes without recursive definitions)
* A limited handling of recursion is possible

* Deciding bisimilarity for general processes is undecidable

Inference system = axioms + inference rules
* Soundness: whatever I infer is correct (i.e., bisimiar)

* Completeness: whatever is bisimilar, it can be inferred




Axioms & Rules for Strong Bisimilarity wid OAPIENZA
Axioms for Sum: Axioms for Restriction:
~-FM+0=M ~0\a=
- M, + My =M, + M (z:oz2 P)\a = Z(a, P)\a
- M, + (M, + M3) = (M; + M) + M3 _
- B 0 if o € {a,a}
FM+M=M - (a.P)\a = { a.(P\a) otherwise
Axiom for Parallel: Inference Rules:
" YeP | D805 = PP | 28,Q5) + ~p=pP  FP=0Q
1 J }— Q = P
Zﬂ](zaz Pz I QJ) +
Z_(PIQJ) -P=Q Q=R
. -P=R
~FP=Q

- ClP| = ClQ
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Theorem (Soundness): If - P = @ then P ~ Q.
Proof.

e for every axiom - LHS = RHS, let us consider the relation
{(LHS,RHS)} U Id and prove that it is a bisimulation;

e the inference rules hold for bisimilarity, since it is an equivalence and a
congruence. ]

P is in standard form if and only if P 2 S a;.P; and ¥; P; is in standard

form.

=
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Lemma 5.2. VP 3 P’ in standard form such that - P = P’

Proof. By induction on the structure of P.

Base case:(P = 0). It suffices to consider P’ £ 0 and conclude by reflexivity.

Inductive step: We have to consider three cases.

2. P2 P;|P;. By induction, we have that 3 P{, P; in standard form such
that - P, = P{ and P, = Pj, where P| = Zaz R; and P; = ZBJ Q;.

From these facts, by context closure, it follows that - P, |P, = P1|P2 and
- P{|Py, = P| |P2’, hence, by transitivity:

e
F PP, = ZazR |Z'BJ Qj
= Zaz(R IZBJ QJ)+ZBJ(ZQ2R | Q;) + Z T(R; | Q;)

=B;

Pl
where the elimination of the parallel from standard forms is repeated until

there are no more occurrences of ‘|’ in the process. ‘
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1. P& > «;.P;. By induction, we have that VP; 3 P/ in standard form such
el
From i~ P, = Pj, by context closure w.r.t. context a:1.0+ > .. 1y @i- B,
we have that
- al.P1 + Z C!z‘.Pi = al.P{ + Z a,-.P,;
ieI\{1} ieI\{1}
From - P, = PJ, by context closure w.r.t. context a,.00 + (a;.P] +
2 ien 1,2} @i-Pi), we have that

~as. P + (al.P{ - Z ai.P,-) = az.Pz’ -+ (al.Pll -+ Z ai.P,-)
ieI\{1,2} ieI\{1,2}
By transitivity and commutativity of choices, we have that

- Za,—.P?; = Z az-.Pz-' -+ Z o;.P;

il ie{1,2} ieI\{1,2}




SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

From - P3 = Pj, by context closure w.r.t. context a3.[:]+(zi€{1,2} ;. Pl+
ZieI\{lsg,;;} az'.Pi), we have that

FogP( Y P+ Y aiP)=a3PiH( Y aPl+ Y ouP)

i€{1,2} 1e1\{1,2,3} 1€{1,2} 1€I\{1,2,3}
and
= z a.,-.P,- = Z C!z'.Pi, + z C!,‘Pz
il i€{1,2,3} ieI\{1,2,3}

We can repeat this reasoning until we obtain

- ZQ,;.P,; = ZO{,;.P{

el el
N s’ Y
P P’
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3. P2 @\a. By induction, we have that 3 Q' in standard form such that
FQ =Q', where Q' = > «;.R;. From this and by congruence, it follows
i€l
that

P
~—

F Q\a

Q'\a
iEZI(ai-Ra)\a
> a;(Ri\a)

iel’

A, _ e e
where I’ = {i € I : o; ¢ {a,a}} and the elimination of restriction is
repeated until such an operator is totally removed from the process. [

=
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Theorem (Completeness): If P ~ @ then - P = Q.

Proof. Because of the previous Lemma, we have that 3 P’,Q’ in standard form
such that F Q = Q' and - P = P’, where

P'=Y P and Q=% 8,.Q
t=1 j=1

We only have to prove that - P’ = Q' and, by transitivity, we would obtain
— P = . This proof is done by induction over the maximum height of the
syntactic tree that describes P’ and @', i.e. over maz{h(P’), h(Q")}.

Base case (0): in this case, P’ = @' = 0 and we trivially conclude.
Induction:

P3P = P3P st Pp~P
= Q30 st. P~Q
= Q' 3Q" st. Q~Q"
by definition of @', it must be that a; = 8;, and Q" = Q;,, for some j;.

By transitivity, we obtain that P; ~ Q-jtl; hence, by induction, it follows that

" A= i,
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Let us now consider the context

C g 051[] + zai.P,;
1=2

Then
P’
- o1.P+ Zai.Pi = ﬁjl.le -+ Zai.Pi
t=2 i=2

By iterating this reasoning on every summand of P’, we can conclude that

FP =p;.Q; + > ;P
i=2
= B;,-Qj, + Bj,-Qj, + gai-ﬂ
= IBJI'le + ﬁjz'Q.’iz + 6j3’Q.’ia + '-Z—::lai'l)i

= gﬁji'Q.ji
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Similarly, we can prove that

- Q’ - Za'ij'Pii

J=1

If we now sum these equalities member-wise, we obtain

FP + zaz’j-Pij = Ql + Eﬁji'Q.ji
1=1

=1

that, by idempotency, implies - P' = Q'. O




Axioms & Rules for Weak Bisimilarity aid OAPIENZA
Axioms for Sum: Axioms for Restriction:

~FM+0=M FOW—

- M, + My = My + M, = (ei-Pi)\e = Z(az P)\a

=M+ (My + M) = (M; + M) + M - (@.P)\a = 0 if a € {a,a}

~M+M=M A a.(P\a) otherwise

Axiom for Parallel:

- Zi:o‘i'P’i | ;63"@.1 Za,(P | Zﬂj Q;) +

Inference Rules:

Zﬂj(zatpleJ) + —P=P ~P=0Q
2 (P lQJ) Q=P
a;=8;

~P=Q FQ=R

Axioms for T: L P—=R
Fa.P=ar1P
FP+TP=P ~P=Q

Fa.(P+7.Q)=a.(P+7.Q)+a.Q ~=C[P]=ClQ|
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Example

A server for exchanging messages, in its minimal version, receives a request for sending
messages and delivers the confirmation of the reception

Specification:

A
Spec = send . Tcv

The behavior of such a server can be implemented by three processes in parallel:

* One handles the button send for sending;

 another one effectively sends the message (through the restricted action put) and waits
fort the signal of message reception (through the restricted action go);

* the last one gives back to the user the outcome of the sending.

\

S £ send. put

A
M 2 put . go » Impl = (S|M|R)\{put, go}
B = go . Tcu

We now want to prove that the specification is equivalent (i.e., weekly bisimilar) to the

implementation. .




28 SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Let us consider the parallel of processes M and R; by
using the axiom for parallel, we have

- M|R = put.(go|R) + go.(M|rcv)

By using the same axiom to the parallel of the three processes, we obtain
~ S|(M|R) = send.(put|(M|R)) + put.(go|R|S) + go.(Tcv|S| M)

By restricting put and go, and by using the second axiom for restriction, we
have that h—
~Impl = (send.(put|M|R))\{put,go} +

(put.(go| B|S))\{put, go} +
(go.(Tcv|S|M))\{put, go}

We now apply the third axiom for restriction to the three summands:

o (send.(put|M|R))\{put, go} = send.(put|(M|R))\{put, go}, since send ¢
{put, put, go, go};

o (put.(go|R|S))\{put, go} = 0;
o (go.(Tev|S|M))\{put, go} = 0.

Hence, — Impl = send.(put|(M|R))\{put, go}. A




28 SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

We now work in a similar V.v‘ay on (W|M |VR3\{put, go}
- M|R = put.(go|R) + go.(M|7cv)

- (put|M|R)\{put, go} = r.(go|R)\ {put, go}
F Impl = send.T.(go|R)\{put, go}

By using the first axiom for weak bisimilarity, we obtain

+ Impl = send.(go|R)\{put, go}
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Again, the processes synchronize, now on name go:

F I'mpl = send.T.(7cv)\{put, go}
As before, this leads to

~ Impl = send.(rcv.0)\{put, go}
We now simply use the third axiom for restriction and obtain
~ Impl = send.7cv.0\{put, go}

Finally, by the first axiom for restriction, we have that

F Impl = send.rcv.0




