DIPARTIMENTO DI INFORMATICA

CONCURRENT SYSTEMS
LECTURE 12

Prof. Daniele Gorla

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

CCS

Up to now, we have considered non-deterministic processes

* Two main features are missing for modeling a concurrent system:
* Simultaneous execution of proc’s
* Interprocess interaction
* Solutions adopted:
* Parallel composition, with interleaving semantics
* Producer/consumer paradigm
Given a set of names N (that denote events)
* a (€ N) denotes consumption of event a
* a (for a € N) denotes production of event a

* a and a are complementary actions: they let two parallel processes synchronize on the
event a

When two processes synchronize, an external observer has no way of understanding what
is happening in the system

—> synchronization is not observable from the outside; it produces a special

‘silent’ action, that we denote with t

The set of actions we shall consideris: A =N UN U {T} A

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

It 1s also useful to force some processes of the system to synchronize between them (without
the possibility of showing to the outside some actions)

The restriction operator P\a restricts the scope of name a to process P
(a 1s visible only from within P)

This 1s similar to local variables in a procedure of an imperative program

The set of CCS processes is defined by the following grammar:

P = Zai.Pi | A(ay...a,) | P|Q | P\a

el

where I is a finite index set and o; € A, for all i € 1.

&3 SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Inference rules

> icr @i P 3 P; foralljel

P{ai/zy ...an/zn} = P’
o/ /Tn) Alz1. . z0)2P
A(al...an)g)P'
P3P £(0.3}
aé¢{a,a
P\a 3 P'\a
P1£>P1’ P23>P2'
P1|P2$P1’|P2 P1|P2$P1|P2’
P %P PP P,%P P,%P

P,|P, - P||P, P,|P, 5 P||P}

SAPIENZA

EXAMPLE S e
o A = a. A) AlB)
Ay y &
e A'=0b.A f/' \x
Aoy
e B=0bB AT T R
e B2:B]
a. A’ > A L \ /
A=q. A’ A"
A S A
A|B Y A’|B
_ b b
b.B, _b) B/ A bA —> A ,A— bB, — B, Béb B/
b B=b.B' FaRA AA =04 N
B > B
A\B 5 A|B’

A|B % A|B

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

In the construction of the LTS we loose the consciousness of the parallel

—> It is indeed possible, by having the new set of actions, to obtain the previous LTS
through the syntax we considered last class

The usefulness of the parallel is two-fold:

* it is the fundamental operator in concurrency theory q (LRI =
* it allows for a compact and intuitive writing of processes.

EXAMPLE (cont’d): (A[B)\b

(A'IB)\R » [AIB\E

CL.A, i) A, A
= A=a.A’
A= A \
(@ a
a_ A7
AB= B sy bp b B

(A|IB)\b-3 (A'|B)\b BZb.B’
BB

AB> A|B)
b {b, b}

(AIB)\b P S

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

The effect of the restriction on b is that we have deleted the transitions involving b
- hide all transitions labelled with » and b

Notice that the t, even if it has been generated by synchronizing on b, it 1s still present
after applying the restriction on b

—> the purpose of the 7 is exactly to signal that a
synchronization has happened but to hide the event on
which the involved processed synchronized

In general, it 1s possible that whole states disappear upon restriction of some names: this
would be the case, e.g., if we consider the LTS arising from (A’ | B)\a,b:

(A]|B)\b
\o

Ol

(A" B)\D » [A|B\b
\o \o

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Image Finiteness

Theorem 3.1. | {P': 3a.P 3 P'} | < oo.

Proof. For every process P, let T(P) be the set of derivation trees for every

possible transition P = P’, for every a and P’. Let us denote with kp the
maximum height of a tree in 7(P). By induction on kp, let us show that

{P': 3a.P 5 P'} is finite.

Base case (kp = 0):
In this case, it must be that P £ > icr @i-Pi. Then, we have that

|{P':3a.P3P}| = |{P :icl}| <|I| <o

Inductive step:
We have to analyze three cases, according to the outmost operator in P.

1. P2 @\a. All inferences for a reduction from P must have as last rule the
one dealing with restriction, i.e.:

Q> Q
Q\a = Q'\a

for every possible inference starting from process Q.

a¢{a,a}

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Since kg < kp, we can use the induction hypothesis and obtain that
1{Q':30.Q 5 Q'} | <
the thesis holds by observing that
{P':3a.P3 P} C{Q\a:3a.Q > Q'}
2. P2 A(a;...a,). In this case, all inferences of P will be of the form

Q{al/a:l .« .an/a:n} & Ql

A
Alay...a,) > Q' A(z;...z,)=Q

where the inference trees for Q{a;/z;...a,/x,} have height lower than
kp. By induction,

| {R:30.Q{a1/z1...an/2zn} = R} | <

The thesis holds by observing that

{P':3a.P 3 P'}={R:3a.Q{a1/z:...a,/z.} = R} ‘

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

3. P2 P, | P,. In this case, notice that:

{(P':30.P % P}= {P!|P,:3a.P, 3 P!}
U{P:|P} : 3a.P, S P}
U{P!|P}: 3a.P, > P/ AP, > P}}
U{P]|P}: 3a.P, > P/ AP, > P}}

The required cardinality is thus at most the sum of the cardinalities of the
four sets depicted above. By induction, we have that every such a set has
a finite cardinality. This easily allows us to conclude. O

=

s 3 OAPTENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Renamings

Let us now consider a renaming, i.e. a function o : N' = N.

By definition, we let o(a) to be o(a) and o(7) be 7 itself.

We now define the result of applying a renaming o to a process P:

o(XieraiP) = Xicr0(ai).o(P)
o(P\a) = o(P)\o(a)
o(PL|P) = o(P)|o(P)
o(Alay,...,a,)) A%(o(ay),...,o0(a,))

I >

where, for every process definition A(zi,...,z,) P, we assume the new

process definition
A (o(z1),...,0(z,)) = o(P)

=

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Theorem 3.2. For every injective renaming o : N — N, if P = P’ then
o(P) % o(P).
Proof. The proof is by induction on the height of the inference for P = P’.

Base case: The only possible such case is with a sum, i.e. P =} . ; a;.P; 3 P;.

In this case, a = a-j and P’ = P;, for some j € I.
We now have that o(P) = Zie;d(ai).a(}’ij
and o(P) % o(P;) Vj € I.

Inductive step:
We have to consider three possible cases:

1. P2 B <l) o AR 01) 2 Q and Q{a1/z1...an/zn} 3 P
By definition of renaming, we have that o(P) = A%(o(a;)...0(a,)).

By inductive hypothesis on (), we have that

o(@Q){o(a)/o(21)...0(an)/o(z,)} 3 o(P')

and we conclude.

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

2. P2 Q\a, Q3 Q' and o ¢ {a,a}).
By definition of renaming, o(Q\a) = o(Q)\o(a)

By induction, o(Q) — § o(Q')

Since o(a) & {o(a),o(a)}, we have the desired o(P) > %) o(P’)

Notice that here injectiveness of ¢ is crucial.

For example, let Q = b.0 and o(a) = o(b) = a; then, P L. 0\a whereas
o(b)
o(P) /4 0\o(a).

3. P2 P, | P,. EXERCISE 2

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Restrictions

Prop.: a.P\a~ 0

Proof.
S = {(a.P\a, 0)} is a bisimulation
Which challenges can (a.P)\a have?
* a.P can only perform a (and become P)
* however, because of restriction, a.P\a 1s stuck
No challenge from a.P\a, nor from 0 = bisimilar!

QED

Prop.: a.P\a ~ 0
Proof.

Similar.

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Idempotency of Sum

Prop.: a.P+a.P+M ~ a.P+M, where M denotes a sum X, B1.Pi
Proof.
S ={ (a.Pto.P+M , a.P+M) }

Is it a bisimulation?
NO: the problem is that, for example:

* o.Ptoa.P+M —o—> P

° o.P+tM —o—> P

« BUT (P,P) in general does NOT belong to S!

So, we can try with
S = { (0.P+a.P+M , a.P+M) } U {(P,P)}
Is it a bisimulation?
NOT YET: P—B—> P’ (challenge and reply), but (P’,P’) is not in S

So, we try with

S ={ (0.P+a.P+tM , a.P+M) } U Id
This 1s a bisimulation (try to prove!) and contains the desired pair.

QED

=B SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

EXAMPLE: Semaphores

An n-ary semaphore S™(p,v) is a process used to ensure that there are no more than n
istances of the same activity concurrently in execution.

An activity is started by action p and is terminated by action v.

The specification of a unary semaphore is the following:
1) & (1)
1) 2 1

The specification of a binary semaphore 1s the following:

s2 2 5. 5§2)
S§2) 2 p. 552) +v-8®
552) 2 v sz)

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

If we consider S®@ as the specification of the expected behavior of a binary semaphore and
S| SM as its concrete implementation, we can show that
S SO ~ S@
This means that the implementation and the specification do coincide

To show this equivalence, it suffices to show that relation

R={ (SW|80, 5@y, (Sfl) | s S§2)),
(S® |5, 52, (57715, 5%) }

1s a bisimulation

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Congruence

One of the main aims of an equivalence notion between processes is to make equational
reasonings of the kind: “if P and Q are equivalent, then they can be interchangeably
used in any execution context”

This feature on an equivalence makes it a congruence
Not all equivalences are necessarily congruences (even though most of them are)

To properly define a congruence, we first need to define an execution context, and then
what 1t means to run a process in a context. Intuitively:

C
. =CrP]

p

where C is a context (i.e., a process with a hole [1), P is a process, and C[P] denotes
filling the hole with P

Example: if C = (L1 | Q)\a, then C[P] = (P | Q)\a

=

s 3 SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

The set C of CCS contexts is given by the following grammar:

C =0 | C|P'| C\a | aC+M

where M denotes a sum.

An equivalence relation R is a congruence if and only if

V(P,Q) e R, VC.(CIP],CIQ]) € R

Theorem 3.7. If P ~ Q then VC. C[P] ~ C[Q).

s 3 OAPTENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Lemma 3.4. If P~ Q then a.P+ M ~ a.Q + M, for all & and M.
Proof. It is sufficient to show that

S={(@P+M,a.Q+M):P~QuacAM=) 0;.P} U ~
iel
is a simulation.

Let (P +M,0.Q+M)eS oaP+MB3P. M=, 0P

l. B=aand PP =P

a.Q) + M can reply with action a and become) by hypothesis, is bisimilar to P

2. B = aj, for some j € I, and P’ = P;

a.QQ + M can reply with the same action and by reducing to the same process.

=

s 3 SAPIENZA

S UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Lemma 3.5. If P ~ @ then P\a ~ Q\a, for all a.

Proof. Also in this case, let us show that
S ={(P\a,Q\a) : VP ~ Q,Va € N'}

is a simulation

Let (P\a,Q\a) € S and P\a = P’
P'=P"\q, for P35 P" and a ¢ {a,a}.

process () can perform the same
action a and reduce to process Q' = Q"”\a. Since P ~ @Q, we have that P"” ~ Q"

=

s 3 SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Lemma 3.6. If P ~ Q then P|R ~ Q|R, for all R.
Proof. Let us show that

S={(PIR,Q|R) : P~ Q}

is a simulation. Let (P|R,Q|R) € S and P|R = P'.
1. P53 P" and P = P"|R

Since P ~ @, we have that Q > Q" and P” ~ Q";
hence, QIR = Q”|R and (P"|R,Q"|R) € S.

2. RS R and P' = P|R’
Trivially, Q|R = Q|R’ and (P|R',Q|R’) € S.

3. P53 P'"AR3 R" (or viceversa) and P’ = P"|R", with a = 1
Since P ~ @, we have that Q = Q" and Q" ~ P

Hence, QIR 5 Q"|R" = Q' and (P',Q’) € S. .

s 3 SAPIENZA

S UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Theorem 3.7. If P ~ Q then YC. C[P] ~ C[Q].

Proof. By induction on the structure of C.

Base case: the only possible context to analyze is C = [.
we have that C[P] = P, for all P. Hence, C[P] ~ C|[Q] by hypothesis.

Inductive step: Let us reason on the possible structure of C' and exploit the
previous lemmata.

For example, if C = R|C’, for some other context C’, then C[P] = R|C’[P] and
ClQ] = R|C'[Q].

By induction (since C’ is smaller than C), we have that C'[P] ~ C’[Q)]

by Lemma 3.6, we obtain that R|C’'[P] ~ R|C’[Q]

=

