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Weak Bisimilarity

The equivalence studied up to now is quite discriminating, in the sense that it distinguishes, 
for example, τ.P and τ.τ.P

If an external observer can count the number of non-observable actions (i.e., the τ’s), this
distinction makes sense; 

If we assume that an observer cannot access any internal information of the system, then this
distinction is not acceptable. 

The idea of the new equivalence is to ignore (some) τ’s:  
• a visible action must be replied to with the same action, possibly together with some 

internal actions
• an internal action must be replied to by a (possibly empty) sequence of internal actions. 





Examples of Weakly Bisimilar Proc’s





Weak Bisim abstracts from any τ?

There exists no weak bisimulation S that contains (P, Q).
By contr. suppose that a bisimulation exists
Since Q −τ→ b.0, there must exist a P’ such that P⇒ P and (P,b.0) ∈ S
The only P that satisfies P⇒ P’ is P itself
hence it should be (P,b.0) ∈ S
Contradiction: P can perform a  whereas b.0  cannot !! 

Similarly, P/R and Q/R are NOT weakly bisimilar



EXAMPLE: Factory
A factory can handle three kinds of works: easy (E), medium (M) and difficult (D). An 

activity of the factory consists in receiving in input a work (of any kind) and in 
producing in output a manifactured work. 

The given specification of an activity is the following: 

where actions iE , iM , iD represent they input of an easy/medium/difficult work, and 𝑜̅
represents the production of an output. 

The factory is given by the parallel composition of two activities:



A possible implementation of this specification is obtained by having two workers that
perform in parallel different kinds of work. 
• For easy works, they don’t use any machinery; 
• For medium works, they can use either a special or a general machine; 
• For difficult works, they have to use the special machine. 

There is only one special and only one general machine that the workers have to share. 
Hence, the specification of a worker is: 

where rg and rs are used to require the general/special machine, lg and ls are used to 
leave the general/special machine, and S and G implement a semaphore on the two
different machines.
The resulting system is given by: 



We now want to show the following weak bisimilarity: 

i.e., that the specification and the implementation of the factory behave the same (apart
from internal actions)

Let N denote {rg,rs,lg,ls} and x,y ∊ {E,M,D}
We can prove that the following relation is a weak bisimulation:



The previous relation is a family of relations: 
• 3 pairs of the second form (one for every x), 
• 9 pairs of the fifth form (one for every x and y), 
• 3 pairs of the sixth form, and 
• 3 pairs of the seventh form. 

Furthermore, we should also consider commutativity of parallel in pairs of the second, 
third, fourth, sixth, seventh and eighth form. 

Thus, R is actually made up of 1+6+2+2+9+6+6+2 = 34 pairs. 



EXAMPLE: Lottery

We want to model a lottery L where we can select any ball from a bag that contains n
balls; after every extraction, the extracted ball is put back in the bag and the 
procedure is repeated. 

The specification is: 

where τ’s represent ball extractions and p̄i is the action that communicates the value of 
the extracted ball. 

The LTS resulting from this specification is:



We now build a system with n components, one for every ball. 
Every component can be in three states: 
• A (waiting for being habilitated to extraction) 
• B (habilitated, with the possibility of being extracted or of habilitating the next

component)
• C (extracted, waiting to externally communicate its value and start the process again): 

Actions a’s create a sort of token ring: 
• the token is passed among the balls (only the ball with the token can be extracted)
• the ball with the token can also nondeterministically decide to pass the token to the next

ball of the ring
• the token is initially given to the first ball (this choice is not mandatory: every ball can 

start with the token) 







EXAMPLE: Scheduler

We have a set of processes Pi (for 0 < i ≤ n) that must repeatedly perform at certain
task. 

A scheduler has to guarantee that processes cyclically start their task, starting from P1. 

Executions of different processes may overlap but the scheduler has to guarantee that
every process Pi completes his performance before starting another one (with the 
same index i). 

Every process Pi requires to start its task via action ai and signals to the scheduler its
termination via action bi
à the scheduler has to guarantee that the a’s cyclically occur, starting with a1, 
and, for every i, the ai’s must alternate with the bi’s, starting with ai



The specification of the scheduler is: 

Si,X denotes the system waiting for activation of process Pi and where processes with 
indices in X are active
The starting configuration is S1,∅
The LTS for n=2 is:



We can try to implement the scheduler in the following way: 

Actions of kind ̅𝑐 are needed to signal to the next process (i.e., with the next index) that it can 
start working

Actions of kind c are needed to receive from the previous process such a signal
Such actions implement a token ring; the token is initially given to the first process:

We now want to show that S ≈ S1,∅



This is NOT the case. Indeed, consider the following part of the LTS for S (where in 
every state, names c1 and c2 are restricted): 

S1,{1,2} can perform b2 whereas (C1 | B2)\{c1,c2} cannot
Problem: we have erroneously added the constraint that the i-th process cannot receive

the token before its completion
à In the implementation, action bi always precedes action ci

Thus, a correct implementation is:   Ci = bi.Di + ci.bi.Ai


