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Concurrency
• Sequential algorithm: formal description of the behaviour of an abstract sequential 

state machine
  à IDEA
• Program: a sequential algorithm written in a programming language
  à TEXT
• Process: a program executed on a concrete machine, characterized by its state (the 

values of the PC and of other registers)
  à ACTION

• Sequential process (or thread): is a process that follows one single control flow (i.e., 
one program counter)

• Concurrency: a set of sequential state machines, that run simultaneously and interact 
through a shared medium

  à Multiprocess program or Concurrent system

• Advantages: 
• Combine the work of different processes, that in parallel solve different tasks
• Simplify the programming of a complex task by dividing it into simpler ones
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Features of a Concurrent System
Many features can be assumed, e.g.
• Reliable vs Unreliable
• Synchronous vs Asynchronous
• Shared memory vs Channel-based communication
• …

We shall focus on reliable, asynchronous and shared memory systems
• Reliable = every process correctly executes its program
• Asynchronous = no timing assumption (i.e., every process has its own clock, and 

clocks are independent one from the other) 
• Shared memory = every process has a local memory (accessible only by itself) but 

there are a few registers that can be accessed by every process

How many processors?
• Usually, one for every process (we assume this, to simplify the presentation)
• But we can also have fewer (actually, also just one!)
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Synchronization: Cooperation vs Competition
Synchronization = the behaviour of one process depends on the behaviour of the others.
This requires two fundamental interactions:
• Cooperation
• Competition

COOPERATION
Different processes work to let all of them succeed in their task.
Examples:
1. Rendezvous: every involved process has a control point that can be passed only when 

all processes are at their control points
à The set of all control points is called Barrier

2. Producer-consumer: 2 kinds of processes, one that produces data and one that 
consumes them, under the following constraints:

• Only produced data can be consumed
• Every datum can be consumed at most once
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Synchronization: Cooperation vs Competition
COMPETITION
Different processes aim at executing some action, but only one (or few) of them succeeds.
Usually, this is related to the access of the same shared resource.
Example: two processes want to withdraw from a bank account (e.g., 1 M€)
 Basic (sequential) program:

 function withdraw() {

  x := account.read();

  if x ≥ 1M€ then account.write(x – 1M€)

 }

 The problem is that, while read and write are usually considered as atomic, their 
sequential composition is not. Assume to have an account with exactly 1M€:

     p1 a.read; a.write
 Correct execution: -----------------|--------|------------------|---------|------------ time
    p2   a.read;   return

    p1 a.read  a.write
 Wrong execution:  ------------------|------------|-------------|-------------|------- time
    p2  a.read;  a.write
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Mutual Exclusion (MUTEX)
Ensure that some parts of the code are executed as atomic (i.e., without intermission of 

any other process)
This is needed both in competition, but also in cooperation (when accessing a shared 

resource)  à EXAMPLE: if both previous processes want to increase the
     account balance of 1M€
Remark: not all code parts require MUTEX (only those that affect shared data)

Critical section: a set of code parts that must be run without interferences, i.e., when a 
process is in a C.S. (on a certain shared object), then no other process is in a C.S. 
(on that shared object).

MUTEX problem: design an entry protocol (lock) and an exit protocol (unlock) such 
that, when used to encapsulate a C.S. (for a given shared object), ensure that at 
most one process at a time is in a C.S. (for that shared object).

Assumptions:
1. All C.S.s terminate
2. The code is well-formed (lock ; <critical_section> ; unlock)
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MUTEX: Safety and Liveness properties
Every solution to a problem should satisfy (at least) 2 properties:
1. Safety: «nothing bad ever happens»
2. Liveness: «something good eventually happens»

Both of them are needed to avoid trivial solutions:
• Liveness without safety: allow anything à this also allows wrong solutions
• Safety without liuveness: forbid anything à no activity in the system

So, safety is necessary for correctness, liveness for meaningfulness.

For MUTEX:
• Safety: there is at most one process at a time that is in a C.S.
• Liveness: various options
• Deadlock freedom: if there is at least one invocation of lock, eventually after at 

least one process enters a C.S.
• Starvation freedom: every invocation of lock eventually grants access to the 

associated C.S.
• Bounded bypass: let n be the number of processes; then, there exists  f : N ⟶ N 

s.t. every lock enters the CS after at most  f(n) other CSs.
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A hierarchy of liveness properties
Bounded bypass è Starvation freedom è deadlock freedom (by def.)

Both inclusions are strict:
• Deadlock freedom ⇏ Starvation freedom:
 Let p1, p2, p3 run the same code: while TRUE do {lock; unlock}
 and consider the following sequence of actions (underlined actions succeed):
  p1   lock               lock               lock             lock              …
  p2   lock unlock                         lock unlock                      …
  p3                        lock  unlock                       lock unlock  …
        ---|------|--------|--------|--------|------|--------|-------------- time

• Starvation freedom ⇏ Bounded bypass:
 Assume a  f  and consider the scheduling above, where p2 wins  f(3) times and 
 so does p3
  à p1 looses (at least) 2f(3) times before winning
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Atomic R/W registers
We will consider different computational models according to the available level of 

atomicity of the operations provided.

Atomic Read/Write registers: these are storage units that can be accessed through 
two operations (READ and WRITE) such that

1. Each invocation of an operation 
• looks instantaneous, i.e. it can be depicted as a single point on the timeline (there 

exists a function  t : OpInv ⟶ R+)
• may be located in any point between its starting and ending time (we have that 

t(opInv) ∈ [tstart(opInv) , tend(opInv)])
• does not happen together with any other operation (function t is injective: 

t(opInv) ≠ t(opInv’) whenever opInv ≠ opInv’)
2. Every READ returns the closest preceeding value written in the register, or the 

initial value (if no WRITE has occurred).

According to whether a register can be read/written by just one process or by many 
different ones, we have: single-read/single-write (SRSW), single-read/multiple-write 
(SRMW), multiple-read/single-write (MRSW), or multiple-read/multiple-write 
(MRMW). 9



Peterson algorithm (for 2 processes)
Let’s try to enforce MUTEX with just 2 processes.

1st attempt:
  lock(i) :=    unlock(i) :=

      AFTER_YOU ß i       return

      wait AFTER_YOU ≠ i

      return

 This protocol satisfies MUTEX, but suffers from deadlock (if one process never locks)

2nd attempt: 
  Initialize FLAG[0] and FLAG[1] to down

  lock(i) :=    unlock(i) :=

      FLAG[i] ß up       FLAG[i] ß down

      wait FLAG[1-i] = down      return

      return

 Still suffers from deadlock if both processes simultaneously raise their flag.
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Peterson algorithm (for 2 processes)
Correct solution: 

 Initialize FLAG[0] and FLAG[1] to down

 lock(i) :=    unlock(i) :=

     FLAG[i] ß up       FLAG[i] ß down

     AFTER_YOU ß i       return

     wait (FLAG[1-i] = down 

       OR AFTER_YOU ≠ i)

     return

Features:
• It satisfies MUTEX (if p is in CS then q cannot)
• It satisfies bounded bypass, with bound = 1
• It requires 2 one-bit SRSW registers (the flags) and 1 one-bit MRMW register 

(AFTER_YOU)
• Each lock-unlock requires 5 accesses to the registers
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MUTEX: by contr., assume that p0 and p1 are simultaneously in CS.
How has p0 entered its CS?

a) FLAG[1] = down à This is possible only with the following interleaving:

p0    … F[0]ßup    A_Yß0    F[1]=down                            C.S.
       --------|---------------|--------------|---------|----------|--------------->
p1                                                         F[1]ßup  A_Yß1    p1 cannot be in CS
                          (this is needed for p0 to find F[1] at down)

b) AFTER_YOU = 1 à This is possible only with the following interleaving:

p0    … F[0]ßup    A_Yß0                A_Y=1                     C.S.
       --------|---------------|---------|-----------|------------------------------>
p1                                         A_Yß1                                   p1 cannot be in CS
                          (this is needed for p0 to find A_Y at 1)



Bounded Bypass (with bound 1): let p0 invoke lock.

If the wait condition is true à it wins (and waits 0)

Otherwise, it must be that FLAG[1]=up AND AFTER_YOU=0
• FLAG[1]=up à p1 has invoked lock
  à p1 will eventually pass its wait, enter in CS and then unlock

• If p1 never locks anymore à p0 will eventually read F[1] and win (waiting 1)

• If p1 locks again
• If p0 reads F[1] before p1 locks à p0 wins (waiting 1)
• Otherwise, p1 sets A_Y at 1 and suspends in its wait (F[0]=up ∧ A_Y=1)
 à p0 will eventually read F[1] and win (waiting 1)



Peterson algorithm (n processes)
• FLAG now has n levels (from 0 to n-1)
• Every level has its own AFTER_YOU

 Initialize FLAG[i] to 0, for all i

 lock(i) :=     unlock(i) :=

   for lev = 1 to n-1 do       FLAG[i] ß 0

  FLAG[i] ß lev       return 

     AFTER_YOU[lev] ß i  
     wait (∀k≠i. FLAG[k] < lev 
        OR AFTER_YOU[lev] ≠ i)

   return

We say that pi is at level h when it exists from the h-th wait
 à a process at level h is at any level ≤ h

14



MUTEX
Lemma: for every ℓ ∈ {0,…,n-1}, at most n- ℓ processes are at level ℓ.
 à this implies MUTEX by taking ℓ = n-1

Proof (by induction on ℓ)
Base (ℓ = 0): trivial
Induction (true for ℓ, to be proved for ℓ+1):
• p at level ℓ can increase its level by writing its FLAG at ℓ+1 and its index in 

A_Y[ℓ+1]
• Let px be the last one that writes A_Y[ℓ+1] (so, A_Y[ℓ+1]=x)
• For px to pass at level ℓ+1, it must be that ∀k≠x. F[k] < ℓ+1
 à px is the only proc at level ℓ+1 and the thesis holds, since 1 ≤ n-ℓ-1
• Otherwise, px is blocked in the wait and so we have at most n-ℓ-1 processes 

at level ℓ+1 (i.e., those at level ℓ, that by induction are at most n-ℓ, except 
for px that is blocked in its (ℓ+1)-th wait)
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Starvation Freedom
Lemma: every process at level ℓ (≤ n-1) eventually wins
 à starvation freedom holds by taking ℓ = 0

Proof (by reverse induction on ℓ)
Base (ℓ = n-1): trivial
Induction (true for ℓ+1, to be proved for ℓ):
• Assume a px blocked at level ℓ (i.e., blocked in its (ℓ+1)-th wait)
 à  ∃k≠x. F[k] ≥ ℓ+1   ∧  A_Y[ℓ+1] = x
• If some py will eventually set A_Y[ℓ+1] to y
 à px will eventually exit from its wait and pass to level ℓ+1
• Otherwise, let G = {pi : F[i] ≥ ℓ+1} and L = {pi : F[i] < ℓ+1}
• If p ∈ L, it will never enter its (ℓ+1)-th loop (otherwise would write A_Y[ℓ+1])
• All p ∈ G will eventually win (by induction) and move to L
 à eventually, px will be the only one in its (ℓ+1)-th loop, will all other
      processes at level < ℓ+1
 à px will eventually pass to level ℓ+1 and win (by induction)
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Peterson algorithm (n processes)
Costs:
• n MRSW registers of   ⎡log2 n⎤   bits (FLAG)
• n-1 MRMW registers of   ⎡log2 n⎤   bits (AFTER_YOU)
• (n-1) × (n+2) accesses for locking and 1 access for unlocking

It satisfies MUTEX and starvation freedom.

It doesn’t satisfy bounded bypass:
• Consider 3 processes, one «sleeping» in its first wait, the others alternating in the CS
• When the first process wakes up, it can pass to level 2 and eventually win
• But the sleep can be arbitrary long and in the meanwhile the other two processes may 

have entered an unbounded number of CSs

Easy to generalize to k-MUTEX (at most k processes simultaneously in the CS)
 à it suffices to have    for lev = 1 to n-k 17


