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L ecture and Exercise

* Lectures:
» Mondays 16:00-19:00 @ De Lollis
» Fridays 10:00-12:00 @ De Lollis
» Labs:
» Thursdays 16:00-19:00 @ Lab 15 (via Tiburtina 205)

« Office hours
»  Thursdays 13:30-15:30 @Room 24, 2° floor, build. G, via Regina Elena 295

* \Website: https://sites.google.com/di.uniromal.it/fds-20242025/home
« Google Classroom Code: bc7iaul

» For slides, course material, assignments and news
« Subscribeto it now
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Exam

« Exam
1. Theory: 50% (written)

2. Practise: 50%, of which

- 2/3 from assignments in Python, to be submitted by given deadlines during the
course

- 1/3 from a final project and presentation
« Assignments:

» The assignments and the final projects must be submitted in groups
- Groups must be of size [3-5]]
- Find a team today!
- Inorder to take partin 1, it's needed a pass on part 2 of the exam

» If you pass part 2, you may book the exam part 1 in the next calendar year
* Final project

» Algorithms, objectives and topics for the final project may be freely chosen

» ldeas for projects and resources for it would be discussed in class
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Exam

 [For the students of Data Science;
1. (Course) Theory: 1/3 (written)

2. (Course) Practise: 1/3, of which

- 2/3 from assignments in Python, to be submitted by given deadlines during the
course

- 1/3 from a final project and presentation
3. (Lab) Python programming lab: 1/3 (written)

« Same rules about the assignments and the final project

SAPIENZA
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Assignments and final project

« Calendar
» Assignment 1: 26 sept - 28 oct (4 weeks)
» Assignment 2: 28 oct - 29 nov (4 weeks)
»  Final Project: 29 nov — 29 dec (4 weeks)
- Project announcement on 11 Nov

- First presentations of ideas on 25 Nov
- Final project presentations on 16 Dec
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Ethical Code of Conduct

« Plagiarism is an act of fraud

« Plagiarism is severely prohibited and, in any form, is regarded as a
serious violation of the ethical code of conduct. Plagiarism includes
the submission of an assignment or project whose source code or
report bears strong resemblance to another persons's source code
or report, including other AML projects and/or resources that can be
found online. After submission, every project would be checked
against plagiarism, including automatic detection tools

« Assignments and projects resulting incurring in plagiarism would be
iInvalidated

B SAPIENZA

UNIVERSITA DI ROMA

7 Fabio Galasso
Fundamentals of Data Science | Winter Semester 2024



Physical and Learning Disabilities

« Sapienza provides counseling and support

* You may reach out to:
sportellodisabili@uniromal.it and counselingdsa@uniromal.it

e Or directly to:
Prof. Tiziana Calamoneri
Coordinator for Disabilities and DSA for the 13S Faculty
http://wwwusers.di.uniromal.it/~calamo/

¥ SAPIENZA
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Material

« Slides and coding scripts are distributed after lectures
* There is much material online

« Books (more at https://sites.google.com/di.uniromal.it/fds-20242025/resources)

» Data Science:
- Bertsimas, O'Hair, Pulleyblank. The Analytics Edge.

- Jure Leskove, Anand Rajaraman, Jeffrey D. Ullman, 2019.
Mining of Massive Datasets. Cambridge University Press.
(available at: http://infolab.stanford.edu/~ullman/mmdsn.html)

» Machine Learning
- Christopher M. Bishop, 2006. Pattern Recognition and Machine Learning
» Deep learning

- lan Goofellow, Yoshua Bengio, Aaron Courville, 2017. Deep Learning
(available at: https://www.deeplearningbook.org/)

» Image Analysis and Recognition, Computer Vision

- Richard Szeliski, 2010. Computer Vision: Algorithms and Applications
(available at: http://szeliski.org/Boaok)
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https://www.deeplearningbook.org/

Coding References

Coding examples and assignments would be in Python (3.x),
leveraging the Pytorch (2.x) framework. The course provides an
Introduction to Pytorch

Books for Python

» Allen B. Downey, 2015. Think Python: How to Think Like a Computer
Scientist (available at:
https://www.greenteapress.com/thinkpython/thinkpython.html)

» Jake VanderPlas, 2016. Python Data Science Handbook: Tools and
Techniques for Developers: Essential Tools for working with Data (Book and
notebooks available at:
https://github.com/jakevdp/PythonDataScienceHandbook)

Online tutorials for Python: https://docs.python.org/3/tutorial/
Online tutorials for Pytorch: https://pytorch.org/tutorials/
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https://www.greenteapress.com/thinkpython/thinkpython.html
https://github.com/jakevdp/PythonDataScienceHandbook

Setup and computing

A Linux OS is recommended
»  but Python, Pytorch and R also run on Windows

« Recommended Python distribution: anaconda
(https://www.anaconda.com/distribution/)

« For running some exercises you may need a GPU
» Use one on Google colab: https://colab.research.google.com

» Refer to my prepared colab notebook (clone it)
https://colab.research.google.com/drive/1e9FFE46ajCoXF-wjg7LMytkjlVIiu4Zhr

« Refer to this tutorial on how to setup Pytorch in Google colab:
»  https://medium.com/dair-ai/pytorch-1-2-quickstart-with-google-colab-6690a30c38d

UNIVERSITA DI ROMA
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Pre-requisites

« Calculus and Linear Algebra

» taking derivatives, understanding matrix vector operations and notation

» Mathematics for Machine Learning (https://mml-book.github.io/book/mml-
book.pdf) chapter 2, 3,4 ,5

« Basic Probability and Statistics

» basics of probabilities, gaussian distributions, mean, standard deviation, etc

» Mathematics for Machine Learning (https://mml-book.github.io/book/mml-
book.pdf) chapter 6
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Syllabus

Basics of digital image processing
Discriminative models

> Linear Regression

4 Logistic Regression

4 Multinomial Logistic Regression
Optimization

> Normal equation

> Gradient Descent

> Newton’s Method

Deep Neural Networks
> Optimization and Back-propagation

> Convolutional neural networks
Bias/Variance
Regularization
Dimensionality Reduction

Variational inference
Advice on DS and ML
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More about own research and the
Perception and Intelligence Lab
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UNIVERSITY OF
CAMBRIDGE

UNIVERSITY OF CAMBRIDGE
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€5 CAMBRIDGE
Textures and 3D reconstruction "
BMVC’07, ISVC’07, ISVC’08, CVPR’09

« Leverage texture to recover the shape
» In controlled environments
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H UNIVERSITY OF
&P CAMBRIDGE

Label propagation and video analysis
CVPR’10, ICCV’11

« Model videos with a graphical model

« First label propagation
» Label non-annotated video frames automatically

4 i
User

provided
labels
X . )
- ' oy
Unknown
labels

s|2ge| pa'leﬁedo:d

Image patches (proposed)
G'= 90.54, C = 67:31

User
provided
labels
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[
l l I . I max planck institut
informatik

= - 2011-2014
EEZ;S%;;;EQ - PDoc Research Associate




s B

Ei:E UNIVERSITY OF inl [] l
&% CAMBRIDGE fogs planch imutii

Video segmentation
ICCV’11, ACCV’12, ICCV’13, ACCV’16

« Learn from videos to mimic the human perception

Ground truth Grundmann et al. CVPR’10 Ours

SAPIENZA

UNIVERSITA DI ROMA
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D
Clustering with graphs

CVPR’14, GCPR’14, CVPR’15

« Learn graph representations for videos
« Learn grouping constraints
* Prove equivalence of graph reductions

Pixel/voxel l Superpixel l
. _%l \ -’ ..‘ .&.
I
._l. Segment
TR

Graph for a video
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R&D Manager
Head of Computer Vision Dept

2014-2019
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. OSRAM
Innovation transfer P ‘ Bt
Smart office

und Forschung

Business potential: light is everywhere people are
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. OSRAM
Innovation transfer @ ‘ Fﬁ”r"é!ﬁ'u“n‘g“”‘"'“
Sm art Offlce und Forschung

« Business potential: light is everywhere people are

* Objective:
make light smarter by pairing it with a camera and some intelligence
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| OSRAM
Innovation transfer ﬁ‘ Bundesministerium

Smart office

und Forscﬁung

« Business potential: light is everywhere people are

* Objective:
make light smarter by pairing it with a camera and some intelligence

 Roadmap: start by detecting the people

' he— N

_— Occupancy Sensor
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| | R OSRAM
Detection, tracking and re-identification ﬁ‘auwmmmm
)

AVSS’17 (15t detector), AVSS‘18 (3rd re-id tracker o dun

und Forscﬁung

« Learn geometric (RPN) proposals
 Track across occlusion with re-identification
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. . OSRAM

Detection, recognition, photometry PN —
:unrdall:i:rggﬁung N

VISAPP’17, ICIP’18, 2x WACV’19 o

« Detect people from top-views and estimate their gaze

* Model lighting and estimate the perceived illumination

Input Scene analysis “The Invisible Light Switch”
Geometry LDC_ 7
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detection estimation
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| OSRAM
M Od eI com p Fression @ Bundesministerium

fiur Wirtschaft

CEFRL at ECCV’18

« First GAN for adversarial network compression

Teacher Network Student Network

Discriminator Network

I
-
Y

adversarial samples

y
Teacher or
Student?
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OSRAM
Innovation transfer

Smart office and retall

« Space utilization and people counting in offices (www.visn.io)
« Customer flow and conversion rate in retail (Edeka, press release?*)
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* www.osram-group.de/de-DE/media/press-releases/pr-2018/17-12-2018b
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OSRAM
Innovation transfer

Smart office and retall

« Space utilization and people counting in offices (www.visn.io)
« Customer flow and conversion rate in retail (Edeka, press release?*)
 Now on sale, also with thermal cameras

NNEF ( deutscher ‘\

digital award

DIGITAL
CHAMPIONS

B2 INMOVATION
A-lw#‘h WORLD CUP” \\

* www.osram-group.de/de-DE/media/press-releases/pr-2018/17-12-2018b
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OSRAM

Innovation transfer P —
. fiir Wirtschaft
Sm art C |ty und Energie

« Installed in the city of Ulm

« Under evaluation for autonomous driving
* With partners:

Ld
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* Since 2019

Perception and Intelligence Lab (PINLab)

at Sapienza




OSRAM

Detection and re-identification of people
CVPR’19, BMVC’19-'20, IMAVIS’20, ACMSurveys’ZMummwm

Find queried people with a Siamese CNN model with Attention
Unified re-id and few-shot learning, not just for people

Query Gallery

41
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UNIVERSITA DI ROMA

From Re-ID to Meta-Learning

« Surveillance
* Long-term tracking across-views
« One-shot understanding

Image source: https://research.qut.edu.au/saivt/research-projects/person-re-identification-using-soft-biometrics/

SAPIENZA

UNIVERSITA DI ROMA
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Domain adaptation for 3D car detection
3DV’20, ECCV’ZZ, TPAMI 23 St =iy .

« Adapt the detector to changes in the LIDAR sensor
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Process Sequences

one to one one to many many to one many to many many to many
t bt ! bt O
I ! bt bt o

\
|
Vanilla Neural Networks o Seq.uencetasllfs . .
e . captioning, video classification, forecasting, ...
classification, detection,

segmentation

Image credits: Fei-Fei Li, Justin Johnson, Serena Yeung
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Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Image Captioning
Image -> sequence of words

Image credits: Fei-Fei Li, Justin Johnson, Serena Yeung
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Process Seguences

one to one one to many many to one many to many many to many

\ e.g. Sentiment Classification
sequence of words -> sentiment

Image credits: Fei-Fei Li, Justin Johnson, Serena Yeung
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Process Seguences

one to one one to many many to one many to many many to many

\ e.g. Machine Translation
seq of words -> seq of words

48
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Process Seguences

one to one one to many many to one many to many many to many

y

e.g. Video classification on frame level

Image credits: Fei-Fei Li, Justin Johnson, Serena Yeung
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UNIVERSITA DI ROMA

49 Fabio Galasso
Fundamentals of Data Science | Winter Semester 2024




Forecasting

one to one one to many many to one many to many many to many

Given some observations (history)
Predict the future auto-regressively

50 Fabio Galasso SAP]ENZA
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People Trajectory Forecasting

Given previous positiQns

-~

Predict future positions
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People Trajectory Forecasting

* For safety of autonomous vehicles

- - ————4..
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http://www.woostercollective.com/post/3d-optical-illusion-painted-on-street-to-make-drivers-slow-down
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MX-LSTM: trajectory and head pose forecasting
WACV’18, CVPR’18, TPAMI’19

* Predict jointly future motion and visual attention
« Condition social pooling on focus

SAPIENZA

UNIVERSITA DI ROMA
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Trajectory Forecasting with Transformers
ICPR’20, Pattern Recognition’23

* A better temporal model counts more than a social model

»  #1 on ETH+UCY, #2 on TrajNet

Fundamentals of Data Science | Winter Semester 2024

Traj N et Transformer Network (TF)
Rank Method Avg FAD MAD Context Cit. Year
“'.? I“Jlfﬁ-glouulrs) [f},"‘};ig :-',I;t;iqr [f};f;?.-; :’ N éﬁﬁﬁl observed value t-7, ped:72, frame:4670.0
3  REDwv3 0.781 1.201 0.360 ! [4] 2019
7 SR-LSTM 0816 1.261 0.37 5 25| 2019 e
9  S.Forces (EWAP) 0.819 1.266 0.371 s [|.-1| 1995 10 | === Observed position
15 Temp. ConvNet (TCN) 0.841 1.301 0.381 / [3] 2018 —_—
16 TF, 0.858 1.900 0.416  / 2020 Distr. Prob.
17 N-Lincar Seq2Seq 0.860 1.331 0.390 ! [4] 2018 8 | g
18 MX-LSTM 0,887 1.374 0.399 5 [12] 208 Ground truth
3 LSTM 1.140 1.793 0.491 ! 1] 2018
36 S5-GAN 1.334 2,107 0.561 5 10] 2018
6
ETH+UCY ’,
a
LSTM-based TF-based (OUrs) 4
Individual Cocial Soc.4+ ma Ind.
S-GAN-ind S5-GAN Trajectron++4 Soc-BIGAT TF, 2
[10] [10] [22] [14] {ours)
ETH 0.81/1.52 0.87/1.62 0.43/0.86 0.69/1.29 0.61 / 1.12
Hotel 0.72/1.61 0.67/1.87 0.12/0.19 0.49/1.01 0.18 / 0.30 0
UCY 0.60/1.26 0.76/1.52 0.22/0.45 0.55/1.32 0.35 / 0.65
Zaral 0.34/0.69 0.35/0.68 0.17/0.32 0.30/0.62 0.22 / 0.38
Zara2? 042/0.84 0.42/0.84 0.12/0.25 0.36/0.75 0.17 / 0.32 0 2 4 B 10 12 14
Avg 058/1.18 0.61/1.21 0.20/0.39 0.48/1.00 0.31 / 0.55
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Human Pose Forecasting
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Space-Time-Separable Graph Convolutional Network
STS-GCN, ICCV’21

« Encode body kinematics, decode future poses

r

Input Pose History
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Human Pose Forecasting
for Human-Robot Cooperation

« For human-robot cooperation in shared workspaces
» E.g. [Matthias et al. ISR'16]

</

_—
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Human Pose Forecasting
for Human-Robot Cooperation

« For human-robot cooperation in shared workspaces
» E.g. [Matthias et al. ISR'16]

« Teammates consider the consequences of their actions on others
» E.g. [Shah et al. ACM-HRI'11]
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CHICO: Cobots and Humans in Industrial COllaboration
ECCV’22

« HRC in 7 industrial actions (reproduced assembly line, KUKA cobot)
» Markerless, 3 RGBD camera views
» 20 actors, 15 annotated joints, ~230 cobot-person collisions

il
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CHICO: Cobots and Humans in Industrial COllaboration
ECCV’22

« HRC in 7 industrial actions (reproduced assembly line, KUKA cobot)
» Markerless, 3 RGBD camera views
» 20 actors, 15 annotated joints, ~230 cobot-person collisions

e Tasks

> i i .
Pf@dlCt the human mOtlon Pose Forecasting Average Inftei;?gce Parameters

msec 400 1000 1000 1000

HisRep 54.6 91.6 91 34 M
MSR-GCN 54.1 90.7 252 6.29 M
STS-GCN 53.0 87.4 23 57.6 k
SeS-GCN 48.8 85.3 23 58.6 k

. - Collision Detection 1000 msec

g DeteCt COIIISIOn Metrics Prec Rec F1
HisRep 0.63 0.58 0.56
MSR-GCN 0.63 0.30 0.31
STS-GCN 0.68 0.61 0.63
SeS-GCN 0.84 0.54 0.64

HisRep: W. Mao, et al., History repeats itself: Human motion prediction via motion attention. ECCV, 2020.
MSR-GCN: Dang et al,, Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction, ICCV, 2021.

=2 SAPIENZA
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Best Practices for Two-Body Pose Forecasting
CVPR’23 wks

« What single-person best practice transfers to forecasting 2
» Frequency input representation

» Space-time separable GCN encoders

» Learned graph connectivity and weights

SA A

»  Attention
» Hierarchical body parts
v| » CNNVs. MLP decoders

DCT Encoder Decoder IDCT
4 Yo )
A, A W
5 - T 5
. B i
i Ly
- ) N/
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Best Practices for Two-Body Pose Forecasting
CVPR’23 wks

What single-person best practice transfers to forecasting 2

vl » Frequency input representation

v| » Space-time separable GCN encoders

vl » Learned graph connectivity and weights

»  Attention
» Hierarchical body parts
vl » CNNVs. MLP decoders
Model Input Repr. Encoding Decoding MPJPE | Param. |
Freq. Enc. v/ | Learn. v/ Sep. / At Hier. | FCv/ | 200 400 600 1000 | (M)

[ [17] v v/ v/ 55112 162 R
2 | Space-time GCN v 108 152 255 379 1.08
3 (kin. tree) v 81 129 183 260  0.I8
4 v v 55 112 156 224 0.18
5 | Input repr. practice v v v 41 88 135 219 0.18
6 v v/ v/ 53 106 148 216 0.18
7 | Encoder practices v v Vel 55 112 157 228 9.9
8 v v/ v 51 104 148 223 0.18
9 | Decoder practices v v v 51 104 145 212 0.17
10 v v v v 4T 89 133 208 0.7
1 v v v v v 51104 146 217 017
12 Best model v v v v v 386120 0]
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About latent roles in forecasting players in team sports
ICLR’23 wks

« Learn role-based interaction between basketball players

7

. B waits for the s
w passage of A . -

g MR\ | Cblocks the L.
| progress of A

A brings the ball
to the 3s area
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About latent roles in forecasting players in team sports

ICLR’23 wks

Learn role-based interaction between basketball players

» Sort players (Order-NN)

» Model role-based interaction with learned affinity terms (Role GCN)
» Decode future player positions

Xin

|  ORDER NEURAL NETWORK -
/ A— e Oz 8) Pred.
ORDER NEURAL 8'
9
NETWORK —
4 .
8
10
RoleGCN bedding  Diff. Ranking  Diff. Shuffling
AWA
DECODER
Xour
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General Assembly of the European

Also Forecasting =M _ﬂ
ESC’21, EPSL’22 - SC 2021 waus

« Earthquake forecasting

> Observed: aCOUStiC emiSSionS Experiment p4679: fault gouge quartz; aperiodic slow and fast events
» Latent: fault zone stress _ < | variance of Acoustic Emission PSS
> Output: time to earthquake -~ ~ i B

Varance

LU IR LLTTLE] | essroms

“ ‘ : -v— TTendF
‘o ] 1 . . b TTstarEF |
Time to Failure (s) L 5

Shew Stress (MP)

f
| s

Time to Faikure (#)

4402 4404 4406 4408 4410 4412 4414 4416 Time(s)

Laurenti, Tinti, Galasso, Franco, Marone (2021). ESC’21
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Also Forecasting _— N
EGU’22 EGUAssemny 2022

* Precipitation forecasting
» Unet3D + STS-GCN for space-time predictions

Prediction

Trappolini, Scofano, Sampieri, Messina, Galasso, Di Fabio, Marzano (2022). EGU’22
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(Video) Anomaly Detection

one to one one to many many to one

Given a sequence of observations
Predict anomalies (with uncertainty)

many to many

eEN N .y,

many to many

[
[
] t 1
[
[
[
[
1

~---_
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Anomaly Detection Applications

Cybersecurity:
attacks, malware, malicious
apps/URLSs, biometric spoofing

j | CYBER SECURITY (@) \ \

’9\ \,

(o)

Finance:
credit card/insurance frauds, market

manipulation, money laundering, etc.

Social Network and Web Security: Astronomy:
false/malicious accounts, false/hatef/toxic Anomalous events
information

Healthcare: Industrial Inspection:

lesions, tumours, events in Defects, micro-cracks

[oT/ICU monitoring, etc.

|

Slide credit: Guansong Pang, Longbing Cao, Charu Aggarwal
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Anomaly Detection Applications

Rover-Based Space Exploration: Video surveillance:
unknown textures anomalous behavior, accidents, fights..

g / / |

Bedrock Drill hole and tailings

(Sol 1032) (Sol 1496)
High-Energy Physics: Material Science: Drug Discovery:
Higgs boson particles exceptional molecule graphs rare active substances

Slide credit: Guansong Pang, Longbing Cao, Charu Aggarwal
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Anomaly Detection
AIM’23, CVPR-wks’23, Pattern Recognition’23 (u. rev.)

« Target data
» Financial series (NAB)
» |T systems (YAHOO)
» Mars aerospace measurements (NASA)
» Medical data on elderly from sensor data (CASA)
» Industrial water treatment (SWarT)
» Anomalous human behavior (UBnormal)

 Real-world problem formulation
» Train on normalcy just (aka OCC)

» Novel classes of test anomaly
(open set)

https://static.tildacdn.com/tild3131-3237-4364-b662-663731666262/anomaly _detection.png
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Anomaly Detection

 Learn to reconstruct normalcy, compare input Vs. reconstructed

> ﬁ»@» Decoder >

« Constrain normalcy into a hypersphere, measure dist. from center

)

ET‘QCOTl

Encoder *E* d( ,C)

SAPIENZA

UNIVERSITA DI ROMA
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Skeletal Motion-based
Anomaly Detection [@ i mmm][@

Layer Layer

MLP
Projector

 Learn to reconstruct normalcy, compare input Vs. reconstructed
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Activity recognition

eEN N .y,

one to one one to many many to one many to many many to many ‘

[

[
T
[

[

[

[

1

-
—
—
\----

~---_

Recognize actions
from skeletal motions (with uncertainty)
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Skeleton-based SSL for action representations

« SoOA builds on SkeletonCLR [Li et al. CVPR’21]

\ Memory Bank ]

Euclidean space
@ + + : ;
+ two views of an action
] )
repulse from z_ stop
2w gradient
z 4
projector g
Z ; "
encoder f
push z to Z
€T
online branch - target branch
input
sequence
(a)SkeletonCLR
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Hyperbolic Self-paced SSL (HYSP)
ICLR’23

« SoOA builds on SkeletonCLR [Li et al. CVPR’

21]

use Poincaré loss

_ MeEank | i R0 oy
- h h
Euclidean space l expop I l expoZ I Hyperbolic space
P Adopt BYOL ™ Tnap to hyperbolic |
stop predictor ¢ stop

repulsg from z_

z
2

push z to Z

gradient

4

target branch

x
online branch -

input input

x
online branch -

gradient

L’
e
-’

Bush depends

on ||

h

certainty

target branch

sequence

(a)SkeletonCLR

sequence

(b)HY SP

« Proposition: use hyperbolic uncertainty to self-pace SSL
» More certain samples should drive learning more predominantly
« _Hyperbolic Self-paced Self-Supervised Learning (HYSP)
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HYSP after training

End-to-end trained uncertainty matches the intuition

» Large sample uncertainty corresponds to
larger prediction errors (larger cosine distance)

Hyperbolic space

» Learn larger uncertainty for more ambiguous actions A
h|[
Error VS Uncertainty - Training ” ”
pO385T— ] \ e
h //bush depends
0.030 1 : on|lAf S
<
. 0-025 1 A g
. 3
Z 0.020
s
£ 0.015
8
()
0.010 -
0.005 -
0.000 -
0.05 0.10 0.15 0.20 0.25
Uncertanty: 1 - radius
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Data is Everywhere

= Explosion in data-driven scientific discovery,
business practices, medicine, education,
politics, societal interventions, ...

= And it’s just the beginning

> Ability to collect data across many domains will
continue to accelerate

» Data analysis techniques will continue to improve

“Data is the oil of the 21st century”
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The Two Steps of Working with Data

(1) Collect data
Via computers, sensors, people, events ...

(2) Do something with it

Make decisions, confirm hypotheses,
gain insights, predict future ...

“Data Science” = Going from (1) to (2)
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This introduction

= Promises of data science
Applications and services

= Data tools and techniques
Database management systems
Data mining and machine learning

= Pitfalls in data science
Correlation and causation
Underfitting and overfitting
Privacy and a few others

= Data systems and platforms
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Promises of Data Science

(1) Collect data

(2) Do something with it
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Traffic
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“deJunin___|; \——l
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2\
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Live traffic « Fast - S/ow
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Recommender Systems

= amazon [ ¥ Valentine's Day Gift Shj
, Jennifer 0
@ m&% Browsing History ~  Jennifer's Amazon.com Eot‘ - ::ro::t ;eLlsts ~ Orders Try Prime ~ VC& .
Your Amazon.com Your Browsing History Improve Your Recommendations Your Profile Learn More 1 C l le Ct data
Recommended for you, Jennifer ( )
—

ETFLIX ORIGINAL

AN YOKQ "0” -

Popular on Netflix

= By IR
1dn—, - =)
SRIMM THE .. BN \B ;!3!
AN 1 59

EWEXT GEMERATIL

+ music, news, friends, romantic partners, and many more!
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Online Advertising
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‘ (2) Do something with it

Rt.emember', he other. veam s data gave the German
counting on Big Data insights based |
on previous games. So, kick teamalegup
Saheli Roy Choudhury | @sahelirc

football

the ball with your other foot.” Thursday, 7 Jul 2016 | 12:39 AMET
cnBC

How Big Data is Changing the World of
Football
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Ocean Health

\ 3 d .
v ? ‘dc;{ -

e i

7= (1) Collect and curate data

ColFAANE AT .2\ AR W

<7 %% (2) Do something with it

44 000 sensors, over 2 billion measurements
Physical, chemical, biological ...
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Genetics-Medicine Relationships

PharmGKB collects, curates, and disseminates
knowledge about how human genetics affects

response to medicines
(1) Collect and curate data

c. ﬁ L[] [ ] L]
Ky, w (2) Do something with it
S/4ETNE T <3
& / ~ Clinical Y Y
&/
& Implementation S Genotype-Based ( Evaluation
q,/ ' Pharmacogenomic 1 )
D/ \ | e Level of Evidence
Q 4
S / ~ Clinical Interpretation -
O/ 4
c . . .
/4 \ L, | S | DraComaa | Vo impoan
&/ Knowledge ) Variants and Drugs i i (VIP) Summaries
L ,z‘ Annotation, Aggregation & Integration \
< ey ' W WA\
&/ .
O : : p i - - Manual Curation
o T ,a m Y I
6‘6 // Knowlacige Extractior \ v o - Automated § Relations
2/ - : =
2 // Primary Pharmacogenomic Literature N RSPy Eaikie
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And Many More

= Weather prediction

* Medical diagnosis

* Financial markets

= Resource management

= Computational social science
= Smart buildings and cities

The list goes on and on,
and it’s still early days
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Data Tools and Techniques

= Basic Data Manipulation and Analysis
Performing well-defined computations or asking
well-defined questions (“queries”)

= Data Mining
Looking for patterns in data

= Machine Learning
Using data to build models and make predictions

= Data Visualization
Graphical depiction of data

= Data Collection and Preparation

99 Fabio Galasso
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Basic Data Manipulation and Analysis

Performing well-defined computations or
asking well-defined questions (“queries”)

= Average January low temperature for each
country over last 20 years

= Number of items over $100 bought by
females between ages 20 and 30

= Frequency of specific medicine relieving
specific symptoms

= The ten stocks whose price varied the most
over the past year

100 Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023




Basic Data Manipulation and Analysis

Performing well-defined computations or
asking well-defined questions (“queries”)

= Averl * Spreadsheets
cour . Relational (SQL) database systems
= Num * “NoSQL” / scalable systems

fem{ « Programming languages with
=« Freq data support (e.g., Python, R)

specific symptoms

= The ten stocks whose price varied the most
over the past year

101 Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023

£2 SAPIENZA
WV &/ UNIVERSITA DI ROMA




Data Mining

Looking for patterns in data

= [tems X,Y,Z are bought together frequently
= People who like movie X also like movie Y

= Patients who respond well to medicines X
and Y also respond well to medicine Z

= Students going to the same university are
frequently online friends

= Wealthier people are moving from cities to
suburbs

102 Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023

£ SApiENZA
WV &/ UNIVERSITA DI ROMA




Data Mining

Looking for patterns in data

= [tems X,Y,Z are bought together frequently

= People bvie Y

* Frequent item-sets

m Patien|. Association rules nes X

and Y |, specialized techniques for [~
= Studer, graphs, text, multimedia | are

frequently online friends

= Wealthier people are moving from cities to
suburbs
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Machine Learning

Using data to build models and make predictions

= Customers who are women over age 20 are
likely to respond to an advertisement

= Students with good grades are predicted to do
well on entrance exams

= The temperature of a city can be estimated as
the average of its nearby cities, unless some of
the cities are on the coast or in the mountains
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Machine Learning

Using data to build models and make predictions

bver age 20 are
rtisement

= Customers

likely to re * Regression

e Classification

° Clustering re predlcted to do

g Students w
well on ent

Roughly: Basic data analysis and data mining
give answers from the available data, while
machine learning uses the available data to
make predictions about missing or future data
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Data Visualization

“A picture is worth a thousand words”
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Early Data Visualization

Napoleon's Army
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Fancy Data Visualization

All teams | | Group stage winners | | Group stage out

IPmm

I Lung and Bronchus

Ismm

I Colon and Rectum

Continental/
Sestood
Sandwich ba

ot

ST Italian
.‘

[ rontiodgin Lymphoma . .

[ Kidney and Renal Peivis

B Pancreas

W Urinary Biadder

B Corpus and Uterus, NOS.

W Thyroid

W Liver and Intrahepatic Bile Duct

W Stomach

™ Oral Cavity and Pharynx
= Melanomas of the Skin

Female
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Basic Data Visualization

Don’t underestimate the power of basic visualizations

. °
u Maps : D Y VI
o ® ® . .
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Misleading Data Visualization

Interest Rates Interest Rates
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Data Collection and Preparation

The “dirty” secret of working with data

» Extracting data from difficult sources

= Filling in missing values

= Removing suspicious data

= Making formats, encoding, and units consistent
» De-duplicating and matching

Data preparation often
consumes 80% or more of the
effort in a data-driven project
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Pitfalls of Data Science

(1) Collect data

(2) Do somethingxith it
correct
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Correlation and Causation

Data analysis, data mining, and machine learning
can reveal relationships between data values

Correlation - Values track each other
« Height and Shoe Size
* Grades and Entrance Exam Scores

Causation - One value directly influences another
* Education Level - Starting Salary
* Temperature - Cold Drink Sales
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Correlation and Causation

“Correlation does not imply causation”

Correlation - Values track each other
* Height and Shoe Size
* Grades and Entrance Exam Scores

Causation - One value directly influences another
* Education Level - Starting Salary
» Temperature - Cold Drink Sales
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Correlation and Causation

“Correlation does not imply causation” I

%N Correlationg
Correlation -, .. —

 Grades an

Causation - (= 3
* Education
 Temperat
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Correlation and Causation

“Correlation does not imply causation”

= Correlation can be result of causation from a
hidden “confounding variable”

= A and B are correlated because there’s a
hidden C suchthatC > Aand C > B

‘*Homeless population and crime rate
Confounding variable: unemployment

ssForgetfulness and poor eyesight
Confounding variable: age

*» Height and shoe size
+» Grades and entrance exam scores
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Correlation and Causation

“Correlation does not imply causation”

= Correlation can be result of causation from a
hidden “confounding variable”

= A and B are correlated because there’s a
hidden C suchthatC > Aand C > B

= Correlation is usually “easy” to test
= Causation is typically impossible to test
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Correlation and Causation

TOBACCO
INDUSTRY
RESEARCH

CENTRE

“I wish they didn’t turn on that

seatbelt sign so much! Every Excellent health statistics - smokers are less
time they do, it gets bumpy.” likely to die of age related ilinesses."'
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Surprising Correlation #1

US crude oil imports from Norway
correlates with

Drivers killed in collision with railway train

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
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-®- Railway train collisions#- US crude oil imports from Norway
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Surprising Correlation #2

Worldwide non-commercial space launches
correlates with

Sociology doctorates awarded (US)

%2}
8 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
§ 60 Launches 700 Degrees awarded?
= o
g o
% 650 Degrees awarde(g
= 50 Launches 8"
1ot Q
g S
5 =
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=) »
8 40 Launches g
=
S 550 Degrees awardecg
@
2 &
2 C,
< 30 Launches 500 Degrees awarded”
g 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Sociology doctorates awarded (U9 Worldwide non-commercial space launches

tylervigen.com
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Cheese consumed

Surprising Correlation #3

Per capita cheese consumption
correlates with

Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33]bs - 800 deaths
" . g
o
2]
8
31.51bs 600 deaths ]
(g
)
=
Q,
301bs 400 deathsg
w
28.51lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Bedsheet tanglings-¢- Cheese consumed
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“Spurious Correlations” Website

http://www.tylervigen.com/
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http://www.tylervigen.com/

Underfitting and Overfitting

Machine learning uses data to create a “model”
and uses model to make predictions

= Customers who are women over age 20 are
likely to respond to an advertisement

= Students with good grades are predicted to do
well on entrance exams
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Underfitting

Model used for predictions is too simplistic

= 60% of men and 70% of women responded to an
advertisement, therefore all future ads should
go to women

= |f a furniture item has four legs and a flat top it
is a dining room table
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Overfitting

Model used for predictions is too specific

= The best targets for an advertisement are
married women between 25 and 27 years with
short black hair, one child, and one pet dog

= If a furniture item has four 100 cm legs with
decoration and a flat polished wooden top with
rounded edges then it is a dining room table
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Regression

= Fit a line or curve to a set of points (model)
= Use model to predict values for new points

]
140 .
120 =] Sl
P
100 >
£ 3
:
al =
254"
0 3
50 55 B0 G5 70 2 s SN I
HE|ght High School GPA
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Underfitting

Model is too simplistic
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Overfitting

Model is too specific

overfitting Underfitting Just right!
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Soccer Match Prediction Scam

* Friday: receive email from “Psychic Sally”
predicting which teams will be the winners in
the weekend’s five soccer matches. She’s right
about all of them!

= Same thing the following weekend: five games,
all winners predicted correctly

= And the following one: five more correct

= Fourth Friday: Sally offers to give you her
predictions for the coming weekend’s games,

for a fee
Should you do it?
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Soccer Match Prediction Scam

How many contacts must Sally start with on
week one to ensure she has 100 potential
buyers by week four, i.e., 100 people who

received 15 correct predicted winners?

(Assume no draws)
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Data Privacy

Of significant concern in some sectors

» Individual data collected covertly
« Edward Snowden, “metadata” argument

* Individual data collected legally but used
questionably

e Individual “information trails” are enormous
 Target stores pregnancy mailing

* |ndividual data deduced from “anonymous”
public data

* Governor of Massachusetts health record
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Languages, Systems, Platforms

= Spreadsheets

Surprisingly versatile and powerful for data
analysis tasks, provided data is not too large

* Programming languages with data support
* R Language - powerful statistical features

* Python - general-purpose language with R-like
add-ons (Pandas, SciPy, scikit-learn)
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Languages, Systems, Platforms

= Relational Database Management Systems
 Also called RDBMS, SQL Systems

» Long-standing solution for reliability, efficiency,
powerful query processing

» Works for all but truly extreme data sizes, or
highly unstructured data

= “NoSQL” Systems
* Distributed/scalable processing

« Some specifically target unstructured data
(documents, graphs)
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Languages, Systems, Platforms

= Specialized languages on scalable systems
* MapReduce / Hadoop
 Spark generalized data flow

= Systems for data preparation

= Systems for data visualization
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Languages, Systems, Platforms

= Data processing in the cloud

« Amazon Web Services, Google Cloud,
Microsoft Azure

» Data storage

» Data processing: SQL, Hadoop, Spark
* Machine learning libraries

* Integration with visualization systems
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How Much Data is There?

Complete works of William Shakespeare
5 megabytes

Average individual
50 gigabytes (10,000 Shakespeares)

USA Library of Congress
10 terabytes (2 million Shakespeares)

Uploaded to Facebook daily
1 petabyte (200 million Shakespeares)

Produced by humanity daily
2.5 exabytes (500 trillion Shakespeares)
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“Big Data”

Some domains produce vast quantities of data,
and some analyses require “big data” to be
effective

» Most tools and techniques apply to data of all sizes
» Big insights can come from small/medium data

Sometimes twenty Spark servers
in the cloud are required.
More often a laptop with SQL, Python,
or simple spreadsheets does the job.
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Some Key Principles

use many data sources (the plural of anecdote is not data)
understand how the data were collected (sampling is essential)
weight the data thoughtfully (not all polls are equally good)
use statistical models (not just hacking around in Excel)

understand correlations (e.g., states that trend similarly)

think like a Bayesian, check like a frequentist (reconciliation)

have good communication skills (VWhat does a 60%
probability even mean? How can we visualize, validate,and
understand the conclusions?)



Some Challenges

massive data (500k users, 20k movies, | 00mratings)

curse of dimensionality (very high-dimensional
problem)

missing data (99% of data missing; not missing at
random)

extremely complicated set of factors that affect people’s
ratings of movies (actors,directors,genre,...)

need to avoid oveffitting (test data vs. training data)
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Machine Learning Applications
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Machine Learning Applications

« Group individuals according to their genes

Genes

| E E E E : E 2

Individuals

[Source: Daphne Koller]
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Machine Learning Applications

it

Organize computing clusters

Fx

Social network analysis
L 4

Market segmentation

W
stronomical d
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Machine Learning Applications

« Cocktail party problem

Speaker #1

Speaker #2 Microphone #2
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What is ML?

THEN
“...the SPHINX system (¢.g.
Lec 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal.. .neural
network methods...hidden
Markov models...

(Mitchell, 1997)

Speech Recognition

1. Learning to recognize spoken words

THEN

*“...the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other

NOW
"
.l

08O

Robotics

2. Learning to drive an autonomous vehicle

1992, 1995), learned its
strategy by playing over onc
million practice games
against itself..."”

Games / Reasoning

3. Learning to beat the masters at board games

(Mitchell, 1997) (Mitchell, 1997)
Source: ‘ge bo:
mo::m.wo«'smmsm
Computer Vision Learning Theory
4. Learning to recognize images * 5.In what cases and how well can we learn?
THEN NOw
*“...The recognizer is a Sample Complexity Results T Tous S Eov]
convolution network that Revolution of Depth - e e i e o i @ Tt € (- T RIA Ty Tee{ PR REY AR
can be spatially replicated. _ R0 T, g () # M) oy
:(:fun th’; nzgvommlnm,a T aw i repnat
idden Marl e ROV P (<) 7 bl Sl
produces word scores. The L3 :”é( ':.)‘\{' i
¥ S A o) ~ bl
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trained to minimize word- o {352 % 1(%¢ W)
level er‘r_ofs:,“_‘_ 4
w‘\\\‘ s 1. How many examples do we need
B - S b A to learn?
- - - £, | ? (‘:. 20 ikl R—(‘)Z 2. How do we quantify our ability to
(LeCun ctal., 1995) P sk b Ruy A P o ylbe ypoblns &, ik s generalize to unseen data?
gk “wo 3. Which algorithms are better
a1 | 2SN petly AR 1 suited to specific leaming

settings?

2 K Crle.
Bzt RO-Roiaéy > 1+
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Speech Recognition

1. Learning to recognize spoken words
THEN NOW

“...the SPHINX system (e.g.
Lee 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal...neural
network methods...hidden
Markov models...”

(Mitchell, 1997)

Source: https:/
showdown/#VoiceStudyResults
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http://www.stonetemple.com/great-knowledge-box-

Robotics

2. Learning to drive an autonomous vehicle
THEN NOW

“...the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars...”

https://www.geek.com/wp-

content/uploads/2016/03/uber.jpg

(Mitchell, 1997)
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http://www.geek.com/wp-

Games [ Reasoning

3. Learning to beat the masters at board games

THEN

“...the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one
million practice games
against itself...”

(Mitchell, 1997)
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Computer Vision

4. Learning to recognize images

THEN

‘...The recognizer is a
convolution network that
can be spatially replicated.
From the network output, a
hidden Markov model
produces word scores. The
entire system is globally
trained to minimize word-
level errors....”

BT AmaP
sEmal

e

-
e WA

(LeCun et al., 1995)

NOW

Research

Revolution of Depth

152 layers
kS
ZZ Layers 19 bwn l I

3 57 l 8 byers 8 layers shallow
ILSVRC'1IS lLWRCM |stncu ILSVRC'13  ILSVRC12  NSVRC11  ILSVRC'10

ResNet AlexNet

ImageNet Classification top-5 error (%)
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Learning Theory

e 5.In what cases and how well can we learn?

Sample Complexity Results FT:TWQS $ gﬂ

Definition 0.1. The sample complexity of a learning algorithm is the Jl R [
number of examples required to achieve arbitrarily small error (with @ True Emor ("!‘“ expeched r'51¢> (" les . G | zadn, E"’“’)
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to 1). R(L) = qu?‘(x)(c*(x) # \1()()) — 90.:1:.75 Ounlemonsm i

Four Cases we careabout...
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A
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What is Machine Learning

« Arthur Samuel (1959). Machine Learning: Field of study that gives
computers the ability to learn without being explicitly programmed
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What is Machine Learning

« Arthur Samuel (1959). Machine Learning: Field of study that gives
computers the ability to learn without being explicitly programmed

« Tom Mitchell (1998) Well-posed Learning Problem: A computer
program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E
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What is Machine Learning

« Grew out of work in Al
* New capability for computers

Artificial
intelligence

Machine
learning

Deep
learning
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What is Machine Learning

« Grew out of work in Al
* New capability for computers

« Examples:

» Database mining

-  Large datasets from growth of automation/web

- E.g. web click data, medical records, biology, engineering
» Applications which cannot be programmed by hand

- E.g. autonomous driving, handwriting recognition, most of Natural Language
Processing (NLP), Computer Vision

»  Self-customizing programs
- E.g. Amazon, Netflix product recommendations
» Understanding human learning (brain, real Al)
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What is Machine Learning

« “A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience E.”

« Suppose your email program watches which emails you do or do
not mark as spam and, based on that, learns how to better filter
spam. What is the task T in this setting?

o Classifying emails as spam or not spam.

o Watching you label emails as spam or not spam.

o The number (or fraction) of emails correctly classified as spam/not spam.
o None of the above—this is not a machine learning problem.
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Capturing the Knowledge of Experts

e ——

1980 1990 2000 2010

Give me directions to Starbucks

If: “give me directions to X”
Then: directions (here, nearest (X))

How do | get to Starbucks?

If: “how do i get to X”
Then: directions (here, nearest (X))

Where is the nearest Starbucks?

If: “where is the nearest X”
Then: directions (here, nearest (X))




Capturing the Knowledge of Experts

e m—)

1980 1990 2000 2010

Solution #2: Annotate Data and Learn

* Experts:

— Very good at answering questions about specific
cases

— Not very good at telling HOW they do it

* 1990s: So why not just have them tell you what
they do on SPECIFIC CASES and then let
MACHINE LEARNING tell you how to come to
the same decisions that they did



Capturing the Knowledge of Experts

e m—)

1980 1990 2000 2010

Solution #2: Annotate Data and Learn
1. Collect raw sentences {Xq, ..., X}
2. Experts annotate their meaning {ys, ..., Yn}

X1: How do | get to Starbucks? X3: Send a text to John that I’1l be late

Y1. directions (here, V3. txtmsg (John, I’1ll be late)
nearest (Starbucks))

X>: Show me the closest Starbucks X4: Set an alarm for seven in the morning

Y2. map (nearest (Starbucks)) Y4. setalarm (7 :00AM)




Data Science Vs Machine Learning
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A Data Scientist Is...

“A data scientist is someone who knows more
statistics than a computer scientist and more
computer science than a statistician.”

- Josh Blumenstock

“Data Scientist = statistician + programmer +
coach + storyteller + artist”

- ShlomoAragmon



Data Science Vs. Machine Learning

* Hugh Conway, 2010
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What is Perception (Computer Vision)
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Machine Learning and Perception (Computer Vision)

Medical applications Security

Gaming

Courtesy of A. Torralba, @ICVSS’18
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Computer Vision

» Science

»  Foundations of perception. How do WE see?

»  computer vision to explore “computational model of human vision”

Categorical judgments,

decision making Simple visual forms,

edges, corners

3 To spinal cord
Br muscle .‘__’/160-220 ms
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Computer Vision

» Science

»  Foundations of perception. How do WE see?

»  computer vision to explore “computational model of human vision”

 Engineering
»  How do we build systems that perceive the world

>

computer vision to solve real-world problems: cars to detect pedestrians
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Computer Vision

» Science

»  Foundations of perception. How do WE see?

»  computer vision to explore “computational model of human vision”

 Engineering
»  How do we build systems that perceive the world

»  computer vision to solve real-world problems: cars to detect pedestrians

* Applications
» medical imaging (computer vision to support medical diagnosis, visualization)
»  surveillance (to follow/track people at the airport, train-station, ...)
»  entertainment (vision-based interfaces for games)
» graphics (image-based rendering, vision to support realistic graphics)

»  car-industry (lane-keeping, pre-crash intervention, ...)
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Some Applications

e US Post office

» At the mail processing plant,
machines separate mail by
shape and size, and orient them
so their addresses are right-side
up and facing the same direction

» An optical scanner scans the
address, and then a bar code
representing the specific address
Is sprayed on the front of the
envelope

» |f the scanner can't read the
address, the letter is manually
sorted
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Some Applications

License Plate Recognition

» London Congestion Charge
https://tfl.gov.uk/modes/driving/congestion-charge

« Security/Surveillance

»  Face Recognition

- Apple’s Face ID: chance of 1-in-1-million that
a random person could unlock your phone

»  Biometric passport (aka e-passport) has an embedded
electronic chip which contains biometric information

- Currently standardized biometrics are facial recognition,
fingerprint recognition, and iris recognition

»  Airport Security
(People Tracking)

* Medical Imaging

»  (Semi-)automatic segmentation
and measurements

* Robotics
« Autonomous driving

171 Fabio Galasso
Fundamentals of Data Science | Winter Semester 2024 UNIVERSITA DI ROMA




More Applications

« Vision on Cellphones:
» e.g. Google Goggles

* Vision for Interfaces:
» e.g. Microsoft Kinect

« Reconstruction

- Google Goggles

Use pictures to search the web.

1‘;’\; Photo Tourism

'“:«w..v“; Exploring photo collections in 3D

e g i
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i l n ' -- Q‘;}\'E‘ ‘:é&?t v ] 2 ; J'J‘.\’.

s

o » L0 ™
“Yp BT FRERTYRRY
R n"w@l‘{f'l;

(a) (b) (c)

g A
| front . /s 40

depth image == bodyparts =& 3D joint proposals

Microsoft
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Preamble on Deep Learning
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Keys to successes
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Keys to successes
Computation

GigaFLOPs per Dollar

18
e CPU o GPU Deep Learning Explosion
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Keys to successes
Computation

GigaFLOPs per Dollar

40
e CPU e GPU e TPU ®
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20 GTX 1080 Ti
15 ® o
GeForce .
®
0 [Alexted o, o0 o°
GeForce ® ® °
5 8800 GTX \ o
N\ s @
0 oc.c%o%m Qe 0® o % o 3 o
1/2004 10/2006 7/2009 4/2012 12/2014 9/2017
Time
176 Fabio Galasso SAP]ENZA

Fundamentals of Data Science | Winter Semester 2024 UNIVERSITA DI ROMA




Keys to successes
Computation

Petaflop/s-days

let+h
AlphaGoZero
°
)
le+2 Neural Machine
Translation _
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1le+0
VGG :
°
ResNets
le-2 AlexNet ¢
o 0
°
3.4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining. ° o
DQN
°
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BiLSTM for Speech
®
16-8 LeNet-5
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Keys to successes
Data

Number

10° : 2 year old kid
of images Blg data
108
80 million images
107 B places
IMAGENET @ TO@
106
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104
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time
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IMJAGENET wwwimage-net.org

22K categories and 14M images

e Animals e Plants e Structures * Person
e Bird e Tree e Artifact e Scenes
* Fish * Flower * Tools * Indoor
e Mammal * Food * Appliances * Geological Formations

* Invertebrate * Materials * Structures * Sport Activities




The Image Classification Challenge:

1,000 object classes
1,431,167 images

Steel drum
Drumstick
Mud turtle

Giant panda
Drumstick
Mud turtle




Keys to successes
Algorithms

Progress in modelling

»  Cognitron/Neocognitron
[Fukushima 1971-1982]

» Pooling
[Riesenhuber and Poggio 1999]

»  Convnet’'s [LeCun et al. 1989]

»  Non-linearities
[Nair, Hinton 2010]

»  DropOut
[Krizhevsky et al. 2012]

»  Batch Normalization
[loffe Szegedy 2015]

» |dentity mapping [He et al. 2015]
» Attention [Bengio et al. 2015]

10 output units

layer H3

30 hidden units

layer H2
12 x 16=192

hidden units

layer H1
12 x 64 = 768

hidden units
H1

256 input units

|2

5]
RODOOOCOCOOOM

>

fully connected
~ 300 links

fully connected
~ 6000 links

~ 40,000 links

wi: from 12 kernels

HREE .o
AEESEEERRE

5x5x8

 ~20,000 links
HH from 12 kernels
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Thank you

Acknowledges: some slides and material from Jennifer Widom, Matthew
R. Gormley, Bernt Schiele, Mario Fritz, Michael Black, Bill Freeman, Fei-
Fei, Justin Johnson, Serena Yeung
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