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Basic Concepts and Terminology

for Image Processing and Computer Vision

Including 2 case studies:

- Recovery of 3D structure

- Object Recognition
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Pinhole Camera (Model)

• (simple) standard and abstract model today

box with a small hole in it



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

10

Camera Obscura

• around 1519, Leonardo da Vinci (1452 - 1519)

http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html

“when images of illuminated 

objects … penetrate through 

a small hole into a very dark 

room … you will see [on the 

opposite wall] these objects in 
their proper form and color, 

reduced in size … in a 

reversed position owing to the 

intersection of the rays”
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Principle of pinhole....

• ...used by artists 

(e.g. Vermeer 

17th century, 

dutch) 

• and scientists 
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Digital Images

• Imaging Process:

(pinhole) camera model

digitizer to obtain digital image
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(Grayscale) Image

• ‘Goals’ of Computer Vision

how can we recognize fruits 

from an array of (gray-scale) 

numbers?

how can we perceive depth 

from an array of (gray-scale) 

numbers?

… 

• computer vision = 

the problem of 

‘inverse graphics’ …?

• ‘Goals’ of Graphics

how can we generate an array of (gray-

scale) numbers that looks like fruits?

how can we generate an array of (gray-

scale) numbers so that the human observer 

perceives depth?

… 
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1. Case Study:

Human & Art - Recovery of 3D Structure
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1. Case Study

Computer Vision - Recovery of 3D Structure

• take all the cues of artists and ‘turn them around’

exploit these cues to infer the structure of the world

need mathematical and computational models of these cues

• sometimes called ‘inverse graphics’
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A ‘trompe l’oeil’

• depth-perception

movement of ball stays the same

location/trace of shadow changes
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Another ‘trompe l’oeil’

• illusory motion

only shadows changes

square is stationary
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Color & Shading
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Color & Shading
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Do you still believe what you see?

• Experiment

carefully point flash light into your eye from one corner

don’t hurt yourself!

• Observation

you’ll see your own blood vessels

they are actually in front of the retina

we’ve adapted to their usual shadow
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2. Case Study:

Computer Vision & Object Recognition

• is it more than inverse graphics?

• how do you recognize 

the banana? 

the glass? 

the towel?

• how can we make computers to do this?

• ill posed problem:

missing data

ambiguities

multiple possible explanations
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Complexity of Recognition
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Complexity of Recognition
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Complexity of Recognition
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Recognition: the Role of Context

• Antonio Torralba
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Recognition: the role of Prior Expectation

• Giuseppe Arcimboldo
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One or Two Faces ?
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Class of Models: Pictorial Structure

• Fischler & Elschlager 1973

• Model has two components

parts 

(2D image fragments)

structure 

(configuration of parts)



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

45

Deformations
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Clutter
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Example
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Recognition, Localization, and Segmentation

• a few terms

• … let’s briefly define what we mean by that
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• Different Types of Recognition Problems:

Object Identification

- recognize your apple, your cup, your dog

Object Classification

- recognize any apple, any cup, any dog

- also called: 
generic object recognition, 
object categorization, …

- typical definition: ‘basic level category’

• Recognition and

Segmentation: separate pixels belonging to the foreground (object) 

and the background

Localization/Detection: position of the object in the scene, pose estimate 

(orientation, size/scale, 3D position)

Object Recognition
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Which Level is right for Object Classes?

• Basic-Level Categories

the highest level at which category members have similar perceived shape

the highest level at which a single mental image can reflect the entire category

the highest level at which a person uses similar motor actions to interact with category members

the level at which human subjects are usually fastest at identifying category members

the first level named and understood by children

(while the definition of basic-level categories depends on culture there exist a remarkable 

consistency across cultures...)

• Most recent work in object recognition has focused on this problem 

Most mature algorithms are in this field
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Detection & Recognition of

Visual Categories

Challenges: • multi-scale

• multi-view

• multi-class

• varying illumination

• occlusion

• cluttered background

• articulation

• high intraclass variance

• low interclass variance



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

53

Challenges of Visual Categorization

• low inter-class variation 

• large intra-class variation 
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• Recognition and

Segmentation: separate pixels belonging to the foreground (object) 

and the background

More than Object Recognition
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• Recognition and

Localization: to position the object 

in the scene, estimate the object’s pose 

(orientation, size/scale, 3D position) 

Example from David Lowe:

More than Object Recognition
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Localization: Example Video 1
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Localization: Example Video 2
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• Different Types of Recognition Problems:

Object Identification

- recognize your apple, your cup, your dog

Object Classification

- recognize any apple, any cup, any dog

- also called: 
generic object recognition, 
object categorization, …

- typical definition: ‘basic level category’

• Recognition and

Segmentation: separate pixels belonging to the foreground (object) 

and the background

Localization/Detection: position of the object in the scene, pose estimate 

(orientation, size/scale, 3D position)

Object Recognition



Basics of Digital Image Filtering
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Basics of Digital Image Filtering

• Linear Filtering

Gaussian Filtering

• Multi Scale Image Representation

Gaussian Pyramid

• Edge Detection

‘Recognition using Line Drawings’

Image derivatives (1st and 2nd order)

• Object Instance Identification using Color Histograms

• Performance evaluation
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Computer Vision and its Components

• computer vision: ‘reverse’ the imaging process

2D (2-dimensional) digital image processing

‘pattern recognition’ / 3D image analysis

image understanding 

Information
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Digital Image Processing

• Image Filtering

take some local image patch (e.g. 3x3 block)

image filtering: apply some function to local image patch
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Image Filtering

• Some Examples:

what assumptions are 

you making to infer the 

center value?

3 or 4
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Image Filtering: 2D Signals and Convolution

• Image Filtering

to reduce noise, 

to fill-in missing values/information

to extract image features (e.g. edges/corners), etc.

• Simplest case:

linear filtering: replace each pixel by a linear combination of its neighbors

• 2D convolution (discrete):

discrete Image: I[m,n]

filter ‘kernel’:      g[k,l]

‘filtered’ image: f[m,n]

can be expressed as matrix multiplication!
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Image Filtering: 2D Signals and Convolution

• 2D convolution (discrete):

discrete Image: I[m,n]

filter ‘kernel’:      g[k,l]

‘filtered’ image: f[m,n]

• mirror the filter (k and l)

• swipe it across the image

• multiply and sum



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

69

Image Filtering: 2D Signals and Convolution

• 2D convolution (discrete):

discrete Image: I[m,n]

filter ‘kernel’:      g[k,l]

‘filtered’ image: f[m,n]

• special case:

convolution (discrete) of a 2D-image with a 1D-filter

-1

0

1
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Linear Filtering (warm-up slide)
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Linear Filtering (warm-up slide)
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Try it out in GIMP

• You can try out linear filter kernels in the free image manipulation tool GIMP 

- availble at gimp.org

• open image

• from the menu pick:

Filters

- Generic

• Convolution Matrix ...

• enter filter kernel in “Matrix”

• press “ok” to apply
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Linear Filtering
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Linear Filtering
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Linear Filtering
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Blurring
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Blurring Examples
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Linear Filtering (warm-up slide)
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Linear Filtering (warm-up slide)
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Linear Filtering
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(remember blurring)
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Sharpening
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Sharpening Example
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Sharpening
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Image Filtering

Interim summary

• Images may need low-level adjustment such as filtering, in  order to 

enhance image quality (e.g. denoising) or extract  useful information 

(e.g. edges)

• Filtering for enhancement → improve contrast

• Filtering for smoothing → removes noise

• Filtering for template matching → detect known patterns
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Image Filtering: 2D Signals and Convolution

• 2D convolution (discrete):

discrete Image: I[m,n]

filter ‘kernel’:      g[k,l]

‘filtered’ image: f[m,n]

• special case:

convolution (discrete) of a 2D-image with a 1D-filter

-1

0

1
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Linear Systems

• Basic Properties:

homogeneity T[a X] = a T[X]

additivity T[X1 + X2]      =  T[X1] + T[X2]

superposition T[aX1 + bX2]  = a T[X1] + b T[X2]

linear systems = superposition

• examples:

matrix operations (additions, multiplication)

convolutions
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Filtering to Reduce Noise

• “Noise” is what we’re not interested in

low-level noise: light fluctuations, sensor noise, quantization effects, 

finite precision, …

complex noise (not today): shadows, extraneous objects.

• Assumption:

the pixel’s neighborhood contains information about its intensity
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Model: Additive Noise

• Image I = Signal S + Noise N:
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Model: Additive Noise

• Image I = Signal S + Noise N

i.e. noise does not depend on the signal

• we consider:

Ii : intensity of i’th pixel 

Ii = si + ni with E(ni) = 0

- si deterministic

- ni,nj independent for i  j

- ni,nj i.i.d. (independent, identically distributed)

• therefore:

intuition: averaging noise reduces its effect 

better: smoothing as inference about the signal
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Average Filter

• Average Filter

replaces each pixel with an average of its neighborhood 

Mask with positive entries that sum to 1

• if all weights are equal, it is called a BOX filter



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

92

Gaussian Averaging (An Isotropic Gaussian)

• Rotationally symmetric

• Weights nearby pixels more than

distant ones

this makes sense as ‘probabilistic’

inference

• the pictures show a smoothing kernel

proportional to 
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Smoothing with a Gaussian

• Effects of smoothing:

each column shows realizations of an image of Gaussian noise 

each row shows smoothing with Gaussians of different width

noise increase

smoothing 

increase
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Smoothing with a Gaussian

• Example:

Original Image Box-filteredGaussian-filtered



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

97

Efficient Implementation

• Both, the BOX filter and the Gaussian filter are separable:

first convolve each row with a 1D filter

then convolve each column with a 1D filter

remember:

- convolution is linear - associative and commutative

• Example: separable BOX filter
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Example: Separable Gaussian

• Gaussian in x-direction

• Gaussian in y-direction

• Gaussian in both directions
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Separable Gaussian

• Gaussian separability:

an  n dimensional Gaussian

convolution is equivalent to

n 1-D Gaussian convolutions
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Multi-Scale Image Representation

• Gaussian Pyramids 

• Example of a Gaussian Pyramid
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Motivation: Search across Scales
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Computation of Gaussian Pyramid
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Gaussian Pyramid

a
• Questions of interest:

which information is 

preserved over ‘scales’

which information is lost 

over ‘scales’
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Fourier Transform in Pictures

• a *very* little introduction on Fourier transforms to talk about spatial 

frequencies…

+ ...
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Subsampling without Average Filtering

• Subsampling without average filtering leads to aliasing

image source: https://en.wikipedia.org/wiki/Aliasing

Original image Image with spatial aliasing
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Another Example

• a bar 

in the big images is a 

hair (on the zebra’s 
nose)

in smaller images, a 

stripe

in the smallest image, 

the animal’s nose
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Basics of Digital Image Filtering

• Linear Filtering

Gaussian Filtering

• Multi Scale Image Representation

Gaussian Pyramid

• Edge Detection

‘Recognition using Line Drawings’

Image derivatives (1st and 2nd order)

• Object Instance Identification using Color Histograms

• Performance evaluation
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Line Drawings: 

Good Starting Point for Recognition?
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Example of Recognition & Localization

• David Lowe
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Example of Recognition & Localization

• David Lowe

1. ‘filter’ image to find brightness changes

2. ‘fit’ lines to the raw measurements
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Example of Recognition & Localization

• David Lowe

3. ‘project’ model into the image and ‘match’ to lines

(solving for 3D pose)
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Class of Models

• Common Idea & Approach (in the 1980’s)

matching of models (wire-frame/geons/generalized cylinders...) 

to edges and lines

• so the ‘only’ remaining problem to solve is: 

reliably extract lines & edges that can be matched to these models...
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Actual 1D profile

• Barbara Image:

entire image

‣ line 250

‣ line 250 

smoothed 

with a 

Gaussian
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What are ‘edges’ (1D)

• Idealized Edge Types:

• Goals of Edge Detection:

good detection: filter responds 

to edge, not to noise

good localization: detected 

edge near true edge

single response: 

one per edge 
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Edges

• Edges:

correspond to fast changes

where the magnitude of the derivative is large

smoothing

“image” of 2 

step-edges

single line of 

“image”
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Edges & Derivatives…

1st derivative

2nd derivative
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Compute Derivatives

• we can implement this as a linear filter:

direct: 

or symmetric:
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Compute Derivatives

• we can implement this as a linear filter:

direct: 

or symmetric:
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Edge-Detection

• based on 1st derivative:

smooth with Gaussian

calculate derivative

finds its maxima
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Edge-Detection

• Simplification:

remember: 

derivative as well as convolution are linear operations

saves one operation
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1D Barbara signal

• Barbara Image:

entire image

‣ line 250

(smoothed)

‣ 1st 
derivative
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1D Barbara signal:

note the amplification of small variations

• Barbara Image:

entire image

‣ line 250

(smoothed)

‣ 1st 
derivative
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Thresholding the derivative?
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Implementing 1D edge detection

• algorithmically:

find peak in the 1st derivative

but

- should be a local maxima

- should be ‘sufficiently’ large

hysteresis: use 2 thresholds

- high threshold to start edge curve (maximum value of 

gradient should be sufficiently large)

- low threshold to continue them (in order to bridge 

“gaps” with lower magnitude)

- (really only makes sense in 2D...)
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Extension to 2D Edge Detection:

Partial Derivatives

• partial derivatives

in x direction:

often approximated with simple filters (finite differences):

in y direction:
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Finite Differences
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Finite Differences responding to noise

• increasing noise level (from left to right)

noise: zero mean additive Gaussian noise



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

130

Again: Derivatives and Smoothing

• derivative in x-direction:

in 1D:

in 2D:
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Again: Derivatives and Smoothing

• derivative in x-direction:

in 1D:

in 2D:

Dx Dy
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Image Filtering

• Edge detection using derivative of Gaussian filter:

Edges along the x axis

Edges along the y axis
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What is the gradient ?

no change

change

no change

change
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What is the gradient ?

small 

change

large change

• gradient direction is perpendicular 

to edge

• gradient magnitude measures edge 

strength
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2D Edge Detection

• calculate derivative

use the magnitude of the gradient

the gradient is:

the magnitude of the gradient is:

the direction of the gradient is:
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2D Edge Detection

• the scale of the smoothing filter affects derivative estimates, and 

also the semantics of the edges recovered

note: strong edges persist across scales

1 pixel 3 pixels 7 pixels
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2D Edge Detection

• there are 3 major issues:

the gradient magnitude at different scales is different; which to choose?

the gradient magnitude is large along a thick trail; how to identify the 

significant points?

how to link the relevant points up into curves?
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‘Optimal’ Edge Detection: Canny

• Assume:

linear filtering

additive i.i.d. Gaussian noise

• Edge Detection should have:

good detection: filter response to edge, not noise

good localization: detected edge near true edge

single response: one per edge

• then: optimal detector is approximately derivative of Gaussian

• detection/localization tradeoff:

more smoothing improves detection

and hurts localization
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The Canny edge detector

thresholding

norm 

(=magnitude) of 

the gradient

thinning 

(non-maximum 

suppression)

original image (Lena)
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Non-maximum suppression

• Check if pixel is local maximum along gradient direction

choose the largest gradient magnitude along the gradient direction

requires checking interpolated pixels p and r
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Butterfly Example (Ponce & Forsyth)



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

145

line drawing vs. edge detection
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Edges & Derivatives…

• recall:

the zero-crossings of the second derivative 

tell us the location of edges

1st derivative

2nd derivative
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Compute 2nd order derivatives

• 1st derivative:

• 2nd derivative:

• mask for 

1st derivative: 2nd derivative:
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The Laplacian

• The Laplacian:

just another linear filter:
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Second Derivative of Gaussian

• in 1D:
• in 2D (‘mexican hat’):
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1D edge detection 

• using Laplacian

Laplacian of Gaussian

operator
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Approximating the Laplacian

• Difference of Gaussians (DoG) at different scales:
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The Laplacian Pyramid
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Edge Detection with Laplacian

• sigma = 4 • sigma = 2
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Basics of Digital Image Filtering

• Linear Filtering

Gaussian Filtering

• Multi Scale Image Representation

Gaussian Pyramid

• Edge Detection

‘Recognition using Line Drawings’

Image derivatives (1st and 2nd order)

• Object Instance Identification using Color Histograms

• Performance evaluation



Object Instance Identification using Color 

Histograms
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Object Recognition (reminder)

• Different Types of Recognition Problems:

Object Identification

- recognize your apple, 

your cup, your dog

- sometimes called:

“instance recognition”

Object Classification

- recognize any apple, 

any cup, any dog

- also called: 

generic object recognition, 

object categorization, …

- typical definition: 

‘basic level category’
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Object Identification 

• Example Database for Object Identification: 

COIL-100 - Columbia Object Image Library

contains 100 different objects, some form the same object class 

(e.g. cars,cups)
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Challenges = Modes of Variation

• Viewpoint changes

Translation

Image-plane rotation

Scale changes

Out-of-plane rotation

• Illumination

• Clutter

• Occlusion

• Noise
2D image

3D object

ry

rx
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Appearance-Based Identification / Recognition

• Basic assumption

Objects can be represented

by a collection of images

(“appearances”).

For recognition, it is 

sufficient to just compare

the 2D appearances.

No 3D model is needed.

• ⇒ Fundamental paradigm shift in the 90’s

3D object

ry

rx



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

186

Global Representation

• Idea

Represent each view (of an object) by a global descriptor.

For recognizing objects, just match the (global) descriptors.

Modes of variation can be taken care of by:

- built into the descriptor

• e.g. a descriptor can be made invariant to image-plane rotations, translation

- incorporate in the training data or the recognition process.

• e.g. viewpoint changes, scale changes, out-of-plane rotation

- robustness of descriptor or recognition process (descriptor matching)

• e.g. illumination, noise, clutter, partial occlusion

= ==
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Case Study:

Use Color for Recognition

• Color:

Color stays constant under geometric transformations

Local feature 

- Color is defined for each pixel

- Robust to partial occlusion

• Idea

Directly use object colors for identification / recognition

Better: use statistics of object colors
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Color Histograms

• Color statistics

Given: R,G,B for each pixel

Compute 1D histograms for the R, G and B, as well as for the luminance

- E.g. Hist(R) = #(pixels with color R)
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3D (Joint) Color Histograms

• Color statistics

Given: tri-stimulus R,G,B for each pixel

Compute 3D histogram 

- H(R,G,B) = #(pixels with color (R,G,B))

• Embed the image into a "more meaningful" space endowed  with 

some notion of "closeness"

[Swain & Ballard, 1991]
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Color Histograms

• Robust representation

presence of occlusion, rotation

[Swain & Ballard, 1991]
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Color

• One component of the 3D color space is intensity

If a color vector is multiplied by a scalar, the intensity changes, but not the 

color itself. 

This means colors can be normalized by the intensity.

- Intensity is given by:  I = R + G + B:

„Chromatic representation“
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Color

• Observation:

Since r + g + b = 1, only 2 parameters are necessary

E.g. one can use r and g 

and obtains b = 1 - r - g
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Recognition using Histograms

• Histogram comparison

Database of known objects

Test image of unknown object

test image

known objects
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Recognition using Histograms

• Database with multiple training views per object

test image
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Recognition using Histograms

• Retrieved object instances given the query-image color histogram

Query Retrieved objects



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

197

Histogram Comparison

• Comparison measures

Intersection
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Histogram Comparison

• Comparison measures

Intersection

• Motivation

Measures the common part of both histograms

Range: [0,1]

For unnormalized histograms, use the following formula
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Histogram Comparison

• Comparison Measures

Euclidean Distance
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Histogram Comparison

• Comparison Measures

Euclidean Distance

• Motivation

Focuses on the differences between the histograms

Range: [0,∞]

All cells are weighted equally.

Not very discriminant
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Histogram Comparison

• Comparison Measures

Chi-square

• Motivation

Statistical background:

- Test if two distributions are different

- Possible to compute a significance score

Range: [0,∞]

Cells are not weighted equally!

- therefore more discriminant

- may have problems with outliers (therefore assume that each cell 

contains at least a minimum of samples)
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Histogram Comparison

• Which measure is best?

Depends on the application…

Both Intersection and 2 give good performance.

- Intersection is a bit more robust. 

- 2 is a bit more discriminative.

- Euclidean distance is not robust enough.

There exist many other measures

- e.g. statistical tests: Kolmogorov-Smirnov

- e.g. information theoretic: Kullback-Leibler divergence, Jeffrey divergence, ...
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Recognition using Histograms

• Simple algorithm

1. Build a set of histograms H = {M1, M2, M3, ...} for each known object

- more exactly, for each view of each object

2. Build a histogram T for the test image.

3. Compare T to each Mk∈H

- using a suitable comparison measure

4. Select the object with the best matching score

- or reject the test image if no object is similar enough (distance above a threshold t)

“Nearest-Neighbor” strategy
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Color Histograms

• Recognition (here object identification)

Works surprisingly well

In the first paper (1991), 66 objects could be recognized almost without 

errors

[Swain & Ballard, 1991]
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Discussion: Color Histograms

• Advantages

Invariant to object translations

Invariant to image rotations

Slowly changing for out-of-plane rotations

No perfect segmentation necessary

Histograms change gradually when part of the object is occluded

Possible to recognize deformable objects

- e.g. pullover

• Problems

The pixel colors change with the illumination 

(„color constancy problem“)

- Intensity

- Spectral composition (illumination color)

Not all objects can be identified by their color distribution.
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Basics of Digital Image Filtering

• Linear Filtering

Gaussian Filtering

• Multi Scale Image Representation

Gaussian Pyramid

• Edge Detection

‘Recognition using Line Drawings’

Image derivatives (1st and 2nd order)

• Object Instance Identification using Color Histograms

• Performance evaluation



Performance evaluation
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Performance Evaluation

• How can we say if method A is better than method B for the  same 

task?

1. Compare a single number - e.g. accuracy (recognition rate),  top-k 

accuracy

2. Compare curves - e.g. precision-recall curve, ROC curve

Accuracy

(Oh, ICCV’15)

Precision-Recall

(Szegedy, NIPS’13)

ROC

(LFW Face verification)
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Score-based evaluation

• The recognition algorithm identifies (classifies) the query object as 

matching the training image if their similarity is above a threshold t

Score = 1

Score = 0

Positive example

Negative example
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Threshold -> Classifier -> Point Metrics

• The recognition algorithm identifies (classifies) the query object as 

matching the training image if their similarity is above a threshold t

Th

0.5
Th=0.5

Label positive Label negative

P
re

d
ic

t
N

e
ga

ti
ve

P
re

d
ic

t
P

o
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tiv
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Point metrics: Confusion Matrix

• The recognition algorithm identifies (classifies) the query object as 

matching the training image if their similarity is above a threshold t

9 2

1 8

Label Positive Label Negative

P
re

d
ic

t
N

e
ga

ti
ve

P
re

d
ic

t
P

o
si

tiv
e

Th=0.5

Th

0.5

Properties:

- Quality of model & threshold decide how columns  
are split into rows.

- We want diagonals to be “heavy”, off diagonals to  

be “light”.
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Point metrics: True Positives

9 2

1 8

Label positive Label negative

Th=0.5

P
re

d
ic

t
N

e
ga
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ve

P
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tiv
e Th TP

0.5 9

TP FP

FN TN



Fabio Galasso

Fundamentals of Data Science   |   Winter Semester 2023

214

Point metrics: True Negatives

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN

0.5 9 8

P
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TP FP

FN TN
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Point metrics: False Positives

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN FP

0.5 9 8 2

P
re

d
ic
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e

TP FP

FN TN
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Point metrics: False Negatives

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN FP FN

0.5 9 8 2 1

P
re

d
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t
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tiv
e

TP FP

FN TN
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FP and FN also called Type-1 and Type-2 errors
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Point metrics: Accuracy

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN FP FN Acc

0.5 9 8 2 1 .85

P
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e
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t
P

o
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tiv
e

Equivalent to 0-1 Loss!

TP FP

FN TN
Overall accuracy = ( TN + TP )/N
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Point metrics: Precision

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN FP FN Acc Pr

0.5 9 8 2 1 .85 .81

P
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t
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o
si

tiv
e

TP FP

FN TN Precision =
TP

TP + FP
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Point metrics:

Positive Recall, True Positive Rate, Sensitivity

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN FP FN Acc Pr Recall

0.5 9 8 2 1 .85 .81 .9

P
re

d
ic

t
N

e
ga

ti
ve

P
re

d
ic

t
P

o
si

tiv
e

Trivial 100% recall = pull everybody above the threshold.  

Trivial 100% precision = push everybody below the  
threshold except 1 green on top.
(Hopefully no gray above it!)

Striving for good precision with 100% recall =

pulling up the lowest green as high as possible in the ranking.  
Striving for good recall with 100% precision =
pushing down the top gray as low as possible in the ranking.

TP FP

FN TN

Recall =True positive rate = 
TP    

= Sensitivity
TP + FN
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Point metrics:

Negative Recall, False Positive Rate, Specificity

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN FP FN Acc Pr Recall Spec

0.5 9 8 2 1 .85 .81 .9 0.8

P
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TP FP

FN TN
False positive rate = 

FP    
= 1-SpecificityTN + FP
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Point metrics: F1-score

9 2

1 8

Label positive Label negative

Th=0.5

Th TP TN FP FN Acc Pr Recall Spec F1

0.5 9 8 2 1 .85 .81 .9 .8 .857
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Point metrics: Changing threshold

Label positive Label negative

7

8

2

3

Th=0.6

Th TP TN FP FN Acc Pr Recall Spec F1

0.6 7 8 2 3 .75 .77 .7 .8 .733

P
re
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t
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e
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t
P

o
si

tiv
e

# effective thresholds = # examples + 1

TP FP

FN TN
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Threshold TP TN FP FN Accuracy Precision Recall Specificity F1

1.00 0 10 0 10 0.50 1 0 1 0

0.95 1 10 0 9 0.55 1 0.1 1 0.182

0.90 2 10 0 8 0.60 1 0.2 1 0.333

0.85 2 9 1 8 0.55 0.667 0.2 0.9 0.308

0.80 3 9 1 7 0.60 0.750 0.3 0.9 0.429

0.75 4 9 1 6 0.65 0.800 0.4 0.9 0.533

0.70 5 9 1 5 0.70 0.833 0.5 0.9 0.625

0.65 5 8 2 5 0.65 0.714 0.5 0.8 0.588

0.60 6 8 2 4 0.70 0.750 0.6 0.8 0.667

0.55 7 8 2 3 0.75 0.778 0.7 0.8 0.737

0.50 8 8 2 2 0.80 0.800 0.8 0.8 0.800

0.45 9 8 2 1 0.85 0.818 0.9 0.8 0.857

0.40 9 7 3 1 0.80 0.750 0.9 0.7 0.818

0.35 9 6 4 1 0.75 0.692 0.9 0.6 0.783

0.30 9 5 5 1 0.70 0.643 0.9 0.5 0.750

0.25 9 4 6 1 0.65 0.600 0.9 0.4 0.720

0.20 9 3 7 1 0.60 0.562 0.9 0.3 0.692

0.15 9 2 8 1 0.55 0.529 0.9 0.2 0.667

0.10 9 1 9 1 0.50 0.500 0.9 0.1 0.643

0.05 10 1 9 0 0.55 0.526 1 0.1 0.690

0.00 10 0 10 0 0.50 0.500 1 0 0.667

Score = 0
Threshold = 0.00

Threshold = 1.00

Score =1

Threshold Scanning
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Recap

• The recognition algorithm identifies (classifies) the query object as 

matching the training image if their similarity is above a threshold t

• Compare actual outcomes to predicted outcomes using  a confusion 

matrix (classification matrix)

Predicted = 0 Predicted = 1

Actual = 0 True Negatives (TN) False Positives (FP)

Actual = 1 False Negatives (FN) True Positives (TP)

N = number of observations

Overall accuracy = ( TN + TP )/N Overall error rate = ( FP + FN)/N

Precision =
TP

TP + FP

True positive rate = 
TP    

= Sensitivity = Recall
TP + FN

False positive rate = 
FP    

= 1-SpecificityTN + FP
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Performance Evaluation

(Overall) Accuracy

Oh, ICCV’15

#Correct Predictions  

#Total Examples
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Threshold Value

• The recognition algorithm identifies (classifies) the query object as 

matching the training image if their similarity is above a threshold t

• The lower the t the more query images are classified as matching

More TP but also more FP

• The higher the t the less query images are classified as matching

More TN but also more FN

• What value should we pick for t?
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Receiver Operator Characteristic (ROC)

• True positive rate  (TPR)

• the larger the TPR

the larger the recall

of actual true matches

(lower threshold t)

• False positive rate (FPR)

• The larger the FPR

the larger number

of false alarms

(lower threshold t)

T
ru

e
 p

o
s
it
iv

e
ra

te

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Receiver Operator Characteristic Curve

0.0 0.2 0.8 1.00.4 0.6

False positive rate

True positive rate = 
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False positive rate = 
FP

TN + FP
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Receiver Operator Characteristic (ROC) space

• True positive rate  (TPR)

• the larger the TPR

the larger the recall

of actual true matches

• False positive rate (FPR)

• The larger the FPR

the larger number

of false alarms
T

ru
e
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False positive rate

classifier A

classifier B
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Selecting a Threshold using ROC

• Capture all thresholds

simultaneously

• Low threshold t

• Large TPR

• Large FPR

• High threshold t

• Small TPR

• Small FPR
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False positive rate

True positive rate = 
TP

TP + FN

False positive rate = 
FP

TN + FP
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Selecting a Threshold using ROC

• Choose best threshold t

for the best trade off

• cost of failing to

identify an object

• cost of raising the

false alarms

Receiver Operator Characteristic Curve
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Selecting a Threshold using ROC

• Choose best threshold t

for the best trade off

• cost of failing to

identify an object

• cost of raising the

false alarms

Receiver Operator Characteristic Curve
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Selecting a Threshold using ROC

• Choose best threshold t

for the best trade off

• cost of failing to

identify an object

• cost of raising the

false alarms

Receiver Operator Characteristic Curve
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Performance Evaluation

ROC curve

LFW Face verification

P
TPR =

TP
=

TP

TP + FN

N
FPR =

FP
=

FP

TN + FP
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Performance across thresholds

• The area under the ROC curve
(AUROC)

• Interpretation

• Given a random positive and
negative,  proportion of the
time you guess which is
which correctly

• Less affected by
sample balance than
accuracy

Receiver Operator Characteristic Curve
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Area Under the ROC Curve (AUROC)

• What is a good AUROC?

• Maximum of 1

(perfect prediction)

• Minimum of 0.5

(just guessing)

Receiver Operator Characteristic Curve
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Performance Evaluation

Precision-recall curve

• Preferred for detection, where TN’s are otherwise undefined

Szegedy, NIPS’13

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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Score = 1

Score = 0

Score = 1

Score = 0

Two models scoring the same data set. Is one of them better than the other?

Model A Model B

Confidence
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● Same ranking, and therefore the same AUROC,  

AUPRC, accuracy!

● Rewards confident correct answers, heavily  

penalizes confident wrong answers.

● One perfectly confident wrong prediction is fatal.

-> Well-calibrated model

● Proper scoring rule: Minimized at

Score = 1

Score = 0

Score = 1

Score = 0

Log-Loss and Brier Score



Thank you

Acknowledges: some slides and material from Bernt Schiele, Mario 

Fritz, Michael Black, Bill Freeman, Fei-Fei, Justin Johnson, Serena 

Yeung, Yining Chen, Anand Avati, Andrew Ng
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