
More On Neural
Networks

Contents
Building blocks of modern CNNs

● Dropout
● Residual Connections
● Layer/Batch Normalization

Data Augmentation

Convolutions for 1D Data

Attention

Transformers

Dropout
Dropout is a regularization technique used in neural networks to prevent
overfitting. It works by randomly "dropping out" (deactivating) a subset of neurons
during each training iteration, making the network less sensitive to specific
neurons and reducing the likelihood of overfitting.

Dropout (training)
During training, dropout randomly deactivates a fraction of neurons in the layer it's
applied to. The neurons are "dropped out" by setting their activations to zero.

The probability of a neuron being dropped out is defined by a hyperparameter p
(dropout rate), where 0≤p<1. For example, if p=0.5, then each neuron has a 50%
chance of being dropped out during training.

The weights of the active neurons are adjusted as usual during backpropagation.
The dropped-out neurons do not contribute to forward or backward passes in that
iteration.

h = r ⊙ x with ri ~ Bernulli(1-p) and ⊙ denoting element-wise multiplication.

Dropout (inference)
During inference (testing or validation), no neurons are dropped out. Instead, the
activations are scaled down by the dropout rate p (typically by multiplying by 1−p)
to account for the fact that fewer neurons were active during training.

h = (1-p)x

Prevents Overfitting and Improves generalization

By randomly deactivating neurons, dropout forces the network to learn more
robust features that do not depend on the presence of specific neurons.

(Not always effective)

But How it is Really Implemented?
In the inverse dropout formulation, the scaling is applied during training instead of
inference. This ensures that the expected value of the activations remains
consistent between training and inference, and there is no need to scale during
inference.

The equation for a single dropout layer with inverse dropout is:

 h = (r ⊙ x) / (1 - p)

Vanishing Gradient
The vanishing gradient problem occurs in deep neural networks, particularly in
very deep networks with many layers. During backpropagation, gradients (the
partial derivatives of the loss with respect to each parameter) become
increasingly small as they propagate backwards from the output layer to the
earlier layers.

● Slow Convergence
● Poor Training
● Poor Performance

Residual Connections
Residual connections (or skip connections) were introduced in Residual Networks
(ResNets) to address this problem. A residual connection "skips" one or more
layers by adding the input of a layer directly to its output, which can be
mathematically represented as:

h = F(x) + x

Each layer adds something (i.e. a residual) to the previous value, rather than
producing an entirely new value.

Backpropagation
We can string together a bunch of residual units.

What happens if we set the parameters such that f(x) = 0?

● Then it passes x straight through unmodified!
● This means it’s easy for the network to represent the identity function.

Backprop:

∇ₓ h = ∇ₓ (F(x) + x) = ∂F / ∂x + I (∇ₓ x = I the identity matrix)

This means the derivatives don’t vanish.

Deep Residual Networks
Deep Residual Networks (ResNets) consist of many layers of residual units.

For vision tasks, the F functions are usually 2 or 3 layer conv nets.

For a regular convnet, performance declines with depth, but for a ResNet, it keeps
improving.

ImageNet
● A 152-layer ResNet achieved 4.49% top-5 error on Image Net. An ensemble of

them achieved 3.57%.
● Previous state-of-the-art: 6.6% (GoogLeNet)
● Humans: 5.1%

They were able to train ResNets with more than 1000 layers, but classification
performance leveled off by 150.

What are all these layers doing? We don’t have a clear answer…

More results here:
https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet

Standard Scaling
Given a dataset X with dimensions (n, d), where n is the number of samples and d
is the number of features, it is common in machine learning to preprocess the
data such that each feature (column) has zero mean and unit variance.

X' = (X - μ) / sqrt(σ²)

where:

μ is the mean of each feature/column, calculated as: μj = (1/n) ∑(i=1 to n) Xij

σ² is the variance of each feature, calculated as: σ²j = (1/n) ∑(i=1 to n) (Xij - μj)²

Batch Normalization
Batch Normalization (BN), extends the concept of data preprocessing by
normalizing the outputs of each layer or block in a neural network. The goal is to
learn an optimal mean and variance for each unit of the network’s layers during
training.

Not straightforward! The mean and variance of the layer's output can change
during the optimization process.

Instead of recalculating the statistics over the whole dataset, BN approximates the
mean and variance by using the data in a mini-batch.

BN Training
Given an output H with dimensions (b, d), where b is the batch size. We compute
mean and variance and standardize it:

H' = (H - μ) / (sqrt(σ²) + ε , where ε > 0 is a small coefficient to avoid division by 0.

The final output of the batch normalization layer BN(H) sets a new mean and
variance for each column:

BN(H) = αjH′i,j + βj for j=1 to d.

The 2d values αj and βj are trained via gradient descent.

BN Inference
During inference since it is undesirable for the output of an input to depend on the
mini-batch it is part of. Two common solutions are:

Post-Training Statistics Calculation
After training, compute the mean and variance by running the trained model on the
entire dataset, and fix the values to these computed statistics.

Moving Average of Statistics
During training, maintain a moving average of the estimated means and variances for
each feature. At inference time, use the final moving averages for normalization,
ensuring that the model's behavior is consistent with what it has learned during
training.

More on BN
What if we have the output of a convolution (b,h,w,c)?

Batch Normalization (BN) works in the same way as before, but with a slight
modification: the mean and variance are computed per channel. This means that
for each channel c, the normalization is applied independently across the spatial
dimensions h and w, as well as the batch dimension b.

Challenges
Mini-Batch Dependencies

BN creates dependencies between the elements within a mini-batch, which can
limit its effectiveness in scenarios such as distributed optimization or contrastive
self-supervised learning.

High Variance with Small Batch Sizes

When using small batch sizes, the variance in the computed mean and variance
estimates can become excessively high. This issue is particularly problematic in
large models that require smaller batches to fit within memory constraints, leading
to unstable training.

Layer Normalization
Layer Normalization normalizes the inputs to a layer across the features (instead
of the mini-batch). This technique is commonly used in forecasting neural
networks working with time series and transformers, where the batch size can
vary or is often set to 1.

Just change the axis!

The 2b values αi and βi are trained via gradient descent.

Data Augmentation
Technique used to effectively increase the size of the training dataset by applying random
transformations to the input data.

1) Sample a mini-batch of examples from the dataset.
2) For each example, apply one or more random transformations, such as flipping,

cropping, rotating, etc.
3) Train the model on the transformed mini-batch.

Benefits of Data Augmentation: Prevents overfitting and enhances model robustness to
small variations in input data, improving generalization to new, unseen examples.

List of Transformations
Geometric Transformations:

● Flipping: Horizontal/vertical flip
● Rotation: Random angle rotation
● Translation: Random shifts in x/y axes
● Scaling: Resize while maintaining aspect ratio
● Cropping: Random region cropping
● Zooming: Zoom in or out
● Affine: Combine translation, scaling, rotation, shear

Color and Lighting Adjustments:

● Brightness/Contrast/Saturation/Hue: Random
adjustments

● Color Jittering: Modify brightness, contrast,
saturation, and hue together

● Grayscale: Convert to grayscale with probability

Noise and Distortion:

● Gaussian Noise: Add random noise
● Salt-and-Pepper Noise: Random pixel value change
● Elastic Deformations: Apply spatial distortions

Cutout/Masking:

● Cutout: Randomly mask rectangular regions
● Random Erasing: Occlude parts with color/texture

Combination Techniques:

● Mixup: Weighted sum of two images
● CutMix: Paste a patch from one image into another

1-D Convolution
Commonly used for time series data where information is ordered in a sequence.
The goal is to extract local features or patterns that evolve over time.

Consider a time series of n steps, x0,x1,…,xn−1 , where each step has c features.

Represent the time series as a matrix X (n,c), where each row corresponds to a
time step, and each column represents a feature.

A 1D convolution with a receptive field of size 2k is defined as:

What do the do?
Local Pattern Detection

1D convolutions capture local dependencies in time series, detecting trends or repeated patterns
over time.

Parameter Sharing

The same filter is applied across all time steps, reducing the number of parameters and
improving generalization.

Translation Invariance

Helps in identifying features that are present at different time steps, making it robust to shifts in
the time domain.

Of course… same as 2D convolution.

Common Applications
Forecasting: Predict future values in time series, e.g., stock prices

Anomaly Detection: Detect unusual patterns or outliers in sensor readings or other
time-dependent data.

Classification: Classify sequences based on temporal patterns, e.g., activity
recognition in wearable sensor data.

Signal Processing: Apply to filtering or denoising time-series signals.

Causal Convolution
Causal Convolution ensures that the output at each time step i only depends on
the current and previous time steps, not future ones. This is important for time
series forecasting or any model where data at future time steps shouldn't
influence the current prediction.

Causal Model
For time-series, a common task is forecasting, i.e., predicting the next step in the
time-series. With a causal model, we have two options:

● Pool the output representation H over n, and apply a regressor head to predict
xn (also valid for non-causal models).

● Define a shifted target Y = [x1, . . . , xn], and train the model such that Hi ≈ Hi+1,
i.e., at each time step the network predicts the next one. This is only possible
with a causal model, otherwise information would ‘leak’ from the input.

Some Pictures

Image from Neural Networks for Data Science Applications (Prof. Scardapane)

Autoregressive Generation
Models trained to predict the next step in a sequence can be used for
autoregressive generation. The process is as follows:

1) Start with an initial input sequence as a prompt.
2) The model predicts the next value in the sequence.
3) Append this prediction to the input and use the updated sequence to forecast

the next step. Repeat!

Image from Neural Networks for Data Science Applications (Prof. Scardapane)

The Famous Self-Attention
1D Convolution and Self-Attention are both techniques used in sequence modeling,
particularly for tasks like time series analysis, natural language processing, and other
temporal data.

In 1D convolution, a filter of fixed size slides over the input sequence, capturing local
patterns by aggregating information from a limited receptive field.

Self-attention computes pairwise interactions between all elements in the sequence. For
each element, it calculates attention scores with every other element, enabling it to learn
dependencies across the entire sequence regardless of their distance.

The output is a weighted sum of all elements, where the weights are learned attention
scores indicating the importance of each element in relation to the others.

1-D Conv vs Self-Attention

1D Conv: Local, shared weights, efficient.
Self-Attention: Global, weights for each pair of inputs, quadratic complexity.

Query, Key, and Value Matrices

Query, Key, and Value Matrices
Each token's embedding vector is transformed into three vectors: Query (Q), Key
(K), and Value (V). These are obtained by multiplying the embedding with learned
weight matrices for Q, K, and V.

Analogy with a Web Search:

● Query (Q): The search term you type—what you're looking for.
● Key (K): The titles of web pages—potential matches for the search.
● Value (V): The content of the web pages—what you actually want to read.

The model uses these Q, K, and V vectors to compute attention scores,
determining how much focus each token should receive when making predictions.

Masked Self-Attention

Masked Self-Attention
Attention Score: The dot product of the Query and Key vectors measures the
similarity between each query and key, forming a matrix that captures the
relationships among all input tokens.

Masking: A mask is applied to the upper triangle of this matrix to block future
tokens, setting their scores to negative infinity. This prevents the model from
accessing information from future steps when predicting the next token.

Softmax: The masked scores are passed through a softmax function, converting
them into probabilities. Each row sums to one, indicating the relevance of each
preceding token based on its alignment score.

Multi-Head and MLPs
The model uses the masked self-attention scores and multiplies them with the
Value matrix to get the final output of the self-attention mechanism. GPT-2 has 12
self-attention heads, each capturing different relationships between tokens. The
outputs of these heads are concatenated and passed through a linear projection.

After the multiple heads of self-attention capture the diverse relationships
between the input tokens, the concatenated outputs are passed through the
Multilayer Perceptron (MLP) layer to enhance the model's representational
capacity.

Transformer Block
Add is just a Residual Connection.

Norm is a Layer Normalization.

Layernorm
now is
applied
before MHA
and MLP

GPT

Building Text Embeddings
How do we represent an input text?

Text input is divided into smaller units called tokens, which can be words or
subwords. These tokens are converted into numerical vectors called embeddings,
which capture the semantic meaning of words.

Word encoders have several issues: Need to detect boundary of words (“O’Neill”,
“don’t”), Word-level tokenization treats different forms of the same word as
separate types (“open”, “opened”, “opens”, “opening”)

Char encoders (a->82) reduce complexity but are almost impossible to use.

SubWord Encoders
Relies on a simple algorithm called byte pair encoding (Gage, 1994)

How does it work?

Form base vocabulary (all characters that occur in the training data)

Base vocab: b, g, h, n, p, s, u

Byte Pair Encoding
Now, count up the frequency of each character pair in the data, and choose the
one that occurs most frequently

Byte Pair Encoding
Choose the most common pair (ug) and then merge the characters together into
one symbol. Add this new symbol to the vocabulary. Then, re-tokenize the data

Byte Pair Encoding
Stop after a fixed number of steps

new vocab: b, g, h, n, p, s, u, ug, un, hug

GPT-2 tokenizes text by first converting it into
bytes (covering all characters with a 256-size
base vocabulary) and then applies Byte Pair
Encoding (BPE) on top to merge frequently
occurring byte sequences into subword
tokens, with specific rules to control the
merging process.

Positional Encoding
Lack of Sequential Awareness

Transformer models process all tokens simultaneously and do not inherently
consider their order. Without positional encodings, the model would treat "cat sat
on the mat" and "mat sat on the cat" as identical, ignoring the sequence
information.

Adding Positional Information

Positional encodings inject order into the model by embedding position-specific
information into the token vectors, enabling the transformer to differentiate tokens
based on their position in the sequence.

Sinusoidal Embeddings

GPT Input

Relative Positional Embeddings
The attention mechanism considers the relative distance i−j between tokens
instead of their absolute positions.

For instance, in Attention with Linear Biases (ALiBi), trainable biases bij are added
based on the relative positions, allowing the model to learn distance-based
relationships directly in the attention scores.

Visualization of ALiBi

Transformer outputs
After the input passes through all Transformer blocks, the resulting output is fed
into a final linear layer that projects it into a 50,257-dimensional space—matching
the vocabulary size. Each value in this output, called a logit, represents the
model's raw prediction score for each token in the vocabulary. To predict the next
word, we apply the softmax function to these logits, converting them into a
probability distribution where each token's probability reflects its likelihood of
being the next word. This distribution can then be used to select the most
probable token or sample one based on its likelihood.

Temperature
To generate the next token, we sample from the probability distribution, adjusting
the temperature hyperparameter to control the randomness of the output:

● Temperature = 1: No effect on logits; the output remains unchanged.
● Temperature < 1: The distribution sharpens, making the model more confident

and outputs more predictable.
● Temperature > 1: The distribution softens, increasing randomness and

allowing for more varied, creative outputs.

By tuning the temperature, we can balance between deterministic and diverse text
generation.

References
Interactive Transformer: https://poloclub.github.io/transformer-explainer/

Tokenization: https://huggingface.co/docs/transformers/tokenizer_summary

PE: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Interactive Tokenizer: https://platform.openai.com/tokenizer

https://poloclub.github.io/transformer-explainer/
https://huggingface.co/docs/transformers/tokenizer_summary
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://platform.openai.com/tokenizer

