TENZA

ITA DI ROMA
DIPARTIMENTO DI INFORMATICA

CONCURRENT SYSTEMS
LECTURE 6

Prof. Daniele Gorla

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Atomicity

We have a set of n sequential processes pl,...,pn that access m concurrent objects X1,...,Xm by

invoking operations of the form Xi.op(args)(ret).

When invoked by pj, the invocation Xi.op(args)(ret) is modeled by two events:
inv[Xi.op(args) by pj] and res[Xi.op(ret) to pj].

A history (or trace) is a pair H = (H , <;) where H is a set of events and <j is a total order on them

The semantics (of systems and/or objects) will be given as a set of traces.

A history is sequential if it is of the form inv res inv res ... inv res inv inv inv ... (where every res
is the return operation of the immediately preceeding inv)
—> a sequential history can be represented as a sequence of operations

A history is complete if every inv is eventually followed by a corresponding res, partial otherwise.

=

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Linearizability

Def.: a complete history H is linearizable if there exists a sequential history S s.t.
1. VX.S|x € semantics(X)

2. Vp.H|,=S§|,

3. Ifres[op] <y inv[op’], then res[op] <g inv[op’]

Given an history K, we can define a binary relation on events — s.t. (op, op’) € — if and only if
res[op] <k inv[op’]. We write op —x op’ for denoting (op, op’) € —x.
Hence, condition 3 of the previous Def. requires that —y € —xg .

EXAMPLE: Let Q be a queue; let pl and p2 be such that
Q.enq(a) Q.enq(b) Q.deq -> b

Q.eng(c) Q.deq -> a
This corresponds to the history
inv[Q.enqg(a) by pl] inv[Q.enqg(c) by p2] res[Q.enq(a) to p1] inv[Q.enq(b) by pl]
res[Q.enq(c) by p2] res[Q.enq(b) by pl] inv[Q.deq() by p2] inv[Q.deq() by p2]
res[Q.deq(a) to p2] res[Q.deq(b) to pl]
It can be linearized as [Q.enqg(a)() by p1] [Q.enq(b)() by p1] [Q.enq(c)() by p2] [Q.deq()(a) to p2]

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Linearizability (cont.’d)

Now consider

Q.eng(c) Q.deq -> c¢

The corresponding history can still be linearized as
[Q.enq(c)() by p2] [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.deq()(c) to p2] [Q.deq()(a) to p1]

By contrast, the following are not linearizable histories:
Q.enq(a) Q.enq(b) Q.deq -> a

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Thm (compositionality): H is linearizable if H|y is linearizable, for all X involved in H
Proof:
For all X, let Sy be a linearization of H|y

- Sy defines a total order on the operations on X (call it —y)

Let — denote — U U - — recall that a relation is a set of pairs, so here you
H XinH X Y

take the union of all pairs of —y and of all —y)

We now show that — 1is acyclic.

1. It cannot have cycles with 1 edge (i.e., self loops): indeed, if op — op, this would
mean that res(op) < inv (op)

2. It cannot have cycles with 2 edges: by contr., assume that op — op’ — op
- both arrows cannot be —; nor — (for some X), otw. such relations were cyclic

- it cannot be that one 1s — and the other —+ (for some X # Y), otw. op/op’ would
be on 2 different objects
Hence, it must be op —x op’ — op (or vice versa)
Then, op’ — op means that res(op’) <y inv(op)
Since Sy is a linearization of H|yand op/op’ are on X, this implies res(op’) <y inv(op),

i.e., that op’ —y op - —y would be cyclic A

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

3. It cannot have cycles with more than 2 edges: by contr., consider a shortest cycle
- adjacent edges cannot belong to the same order (otw. the cycle would be
shortable, because of transitivity)
- adjacent edges cannot belong to orders on different objects
Hence, at least one — exists, and it must be between two —y, 1.€.:
opl — op2 —x o0p3 —yopd

is part of the shortest cycles chosen (possibly with op4=op1).

opl —yop2 means that res(opl) <y inv(op2)
op2 —xop3 entails that inv(op2) <y res(op3)
Indeed, if not, we would have that res(op3) <y inv(op2), since <y 1S
atotal order > we would have a cycle of length 2

op3 —yop4 means that res(op3) <y inv(op4)

By transitivity of <y, we would then have that res(opl) <y inv(op4), 1.e. opl —; op4

=

—> in contradiction with having chosen a shortest cycle

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Every DAG admits a topological order (i.e., a total order of its nodes that respects the
edges)

- Let —’ denote a topological order for —
Let us then define a linearization of H as follows:

S =inv(op1) res(opl) inv(op2) res(op2) ... whenever opl —’ op2 —’ ...

S 1s clearly sequential; moreover:

1. Forall X, S|x = Sx (€ semantics(X)). Indeed:

_ s _ ~ .
<5, = 7x & 2k € 2k = —gx T <gx

- Since <g, and <gx are total orders on the same set of events (i.e., Alx),
they must coincide

2. Forall p, H|,= inv(opl,) res(opl,) inv(op2,) res(op2,)...

(bec. p 1s sequential)
= §J,

(bec. opl, =y op2, —y... and =< —)

=

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Alternatives to Atomicity (1)

Sequential consistency

Let us define op —,,c 0p’ to hold whenever there exists a process p that issues both operations,
with res[op] happening before inv[op’].

Def.: a complete history H is sequentially consistent if there exists a sequential history S s.t.

1. VX.S|x € semantics(X) (like linearizability)
2. Vp. H|p = §|p (like linearizability)
3. e € =g (in place of —y € —)

This is a more generous notion than linearizability.

EXAMPLE: Let H be [Q.enq(a)() by p1] [Q.enq(b)() by p2] [Q.deq()(b) to p2]

- not linearizable: m the only possible linearization of H is H itself (because of cond.3)
m it violates the semantics of a queue (cond.1)

- it is sequentially consistent, by swapping the first two actions, i.e. by considering S to be

[Q.enq(b)() by p2] [Q.enq(a)() by p1][Q.deq()(b) to p2]

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Alternatives to Atomicity (1)

The problem with sequential consistency is that it is NOT compositional.

EXAMPLE

Consider the following two processes:

pl: Q.enq(a); Q’.enq(b’) ; Q*.deq()>b’
p2: Q’.enq(2’) ; Q.enq(b) ; Q.deq()>b

In isolation, both processes are sequentially consistent

However, no total order on the previous 6 operations respects the semantics of a queue:
 Ifpl receives b’ from Q’.deq, we have that Q’.enq(a’) must arrive after Q’.enq(b’)
* Torespect —,, , also the remaining behaviour of p2 must arrive after

* Hence, Q.enq(a) arrived before Q.enq(b) and so it is not possible for p2 to receive b from its

Q.deq
Hence, we have two histories that are sequentially consistent but whose composition cannot be

sequentially consistent —> no compositionality! I

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Alternatives to Atomicity (2)

Serializability (typical notion in databases)

* We now have transactions instead of processes
* Consequently, we have also two other kinds of events: abort(t) and commit(t)

* The constraint is that, in every history, we have at most one of these events for every
transaction; if the history is complete, we must have exactly one of these events for every
transaction

A sequantial history is formed by committed transactions only

Def.: a complete history H is serializable if there exists a sequential history S s.t.

1. VX.S|x € semantics(X) (like linearizability)
2. S={e€H:e€te committedTrans(H)}
3. —ans € —5 (Where —,,, is defined like —,,,. in seq. cons.)

Again, this 1s a more generous notion than linearizability, but it is not compositional

—> consider the previous two examples, where instead of processes, you have transactions

=

