TENZA

ITA DI ROMA
DIPARTIMENTO DI INFORMATICA

CONCURRENT SYSTEMS
LECTURE 2

Prof. Daniele Gorla

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Tournament-based algorithm

Even without contention, Peterson’s algorithm costs O(n?)

A first way to reduce this cost is by using a tournament of MUTEX between pairs of

processes:
pl '
w(l,2)
p2 | —
\J(W(I,Z),W(3,4))
. : . p3 [—
By using Peterson’s algorithm w(3,4)
for 2 proc, a process wins after p4 |
[logz n] competitions, each of C.S.
constant cost. pS :
> O(log n) w(3,6)
p6 |——
WJKW(5,6),W(7,)
p7 [—=
w(7,8)
p8 leom—

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

A constant-time algorithm (for n processes)

The cost can be further reduced to O(1).
To begin, consider the following idea:

Initialize Y at 1, X at any value (e.g., 0)

lock(i) := unlock (i) :=
X € i Y € 1
if Y # 1 then FAIL return

else Y € 1
if X = 1 then return

else FAIL

Without contention, this requires 4 accesses to the registers for entering the CS

Problem:

* we don’t want the FAIL (that forces the process to invoke lock again and again), but
an implementation of lock that keeps the process inside this primitive until it wins

» Itis possible to have an execution where nobody accesses its CS

—> if repeated for ever, enatils a deadlock -

Fast MUTEX algorithm (by Lamport)

Initialize Y at 1, X at any value (e.g., 0)

lock(i) :=
* FLAG[i] € up
X € i

if Y # L then FLAG[i] < down
wait ¥ = 1L
goto *
else Y € i
if X = 1 then return
else FLAG[i] < down
Vj.wait FLAG[J]

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

= down

if Y = 1 then return

unlock (i) := else wait ¥ = 1

Y € 1L goto *

FLAG[i] € down

return

=

=B SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

MUTEX: if p1 1s in CS, then no other pj can simultaneaously be in CS

Proof:
How can pi1 enter its CS?

a) F[i]€up X€1 Y=1 Y€1 X=1 CS
------ e
For pj to enter its CS, it must
find Y at 1, soit mustread Y

here
Where did pj write X?
not here, otherwise pi would not have read 1 in X

So, it must have

written X here.
Hence, when pj reads X, it finds it different from j
—> it must wait for pi’s unlock before starting again

= pj cannot be in CS while pi is A

=B SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

b) Flij€up X€&i Y=L Y&i X# Fli]€down VkF[kl=down Y=i CS
------ e e
pj must read Y
here
Where did pj write X?
If here,
like (a)

So, let pj write X here
- if pj reads X at j =2 it enters its CS, that however
must be finished before
- pj’s CS doesn’t overlap with pi’s one
- otherwise, pj must have written Y before pi (since pi finds
Y at1)
= pj is blocked until pi unlocks

=

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Deadlock freedom: let p1 invoke lock

« Ifit eventually wins > V

« Ifitis blocked for ever, where can 1t be blocked?
1. Inthe second wait Y = L
—> 1n this case, it read a value in Y different from 1
—> there is a ph that wrote Y after pi
> let us consider the last of such ph’s > it will eventually win >
2. In the Vj.wait FLAGJ[j]=down
—> this wait cannot block a process for ever
- if pj doesn’t lock, it flag is down
- if pj doesn’t find Y at L, it puts its flag down
- if pj doesn’t find X at j, it puts its flag down
otherwise pj enters its CS and eventually unlocks (flag down)

=

=B SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

3. In the first wait Y = L
—> since pj read a value different from L, there is at least one pk that
wrote Y before (but has not yet unlocked)

> if pk eventually enters its CS >

otherwise, 1t must be blocked for ever as well. Where?
- In the second wait Y = L: but then there exists a ph that eventually

enters its CS (see point 1 above) =2 \
- In the Vj.wait FLAGJ[j]=down: this wait cannot block a process
for ever (see point 2 above)

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Fast MUTEX algorithm (by Lamport)

Without contention, this algorithm requires 5 accesses to the shared registers

It can be proved to satisfy MUTEX and deadlock freedom (you can easily built a scenario
where a process 1s starved)

- we will see that every deadlock-free algorithm can be turned into a bounded

bypass one (but with a quadratic bound...)

To sum up: with atomic R/W registers, we have
* With 2 processes, a O(1) algorithm that satisfies bounded bypass (with bound 1)
* With n processes:
« a O(n?) algorithm that satisfies starvation freedom
* aO(log n) algorithm that satisfies bounded bypass (with bound [logz n])
* a O(1) algorithm that satisfies deadlock freedom

=

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

From deadlock freedom to bounded bypass

Let DLF be a deadlock free protocol for MUTEX.
We now want to turn it into a bounded bypass protocol for MUTEX

Round Robin algorithm
—> the name comes from a middle age habit for signing petitions, called

Ruban Rond (that means «round ribbony)
—> a circular way of signing, to hide the identity of the initiator

Initialize FLAG[i] to down (Vi) and TURN to any proc.id.

lock(i) := unlock (i) :=
FLAG[i] € up FLAG[i] € down
wait (TURN = i OR if FLAG[TURN] = down then
FLAG[TURN] = down) TURN € (TURN+1l) mod n
DLF.lock(1) DLF.unlock(1i)
return return

- - =

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

MUTEX for RR algorithm follows from the assumed MUTEX of DLF

Deadlock freedom of RR: if at least one process invokes RR.lock, then at least one
process enters the CS.

Proof:
Since DLF enjoys deadlock freedom, it suffices to prove that at least one process
invokes DLF.lock (i.e., at least one proc exists from its wait)

If TURN=k and p, invoked lock, then it finds TURN = k and exits its wait
Otherwise, any other process finds FLAG[TURN]=down and exits from its wait

B SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Lemma 1: If TURN =1 and FLAG][1] = up, then pi enters the CS in at most (n-1)
iterations

Proof:

OBS1: TURN changes only when FLAG[1] is down (i.e., after p1 has completed
its CS)

OBS2: FLAG[i]=up > either pi is in its CS >
or pi is competing for its CS =2 it eventually invokes
(or has already invoked)
DLF.lock
OBS3: if pj invokes lock after that FLAGIJ1] 1s set, pj blocks 1n its wait

Let Y be the set of processes competing for the CS (i.e., suspended on DLF.lock)
e Because of OBS2,1€Y

* Because of OBS3, once FLAG[1] is set, Y cannot grow anymore

- - =

B SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

* Because DLF is deadlock free, eventually one py € Y wins
Ify=i >+
otherwise, Y shrinks by one (the py that entered the CS). Indeed:
because of OBS1, TURN (and FLAG[TURN]) don’t change
—> py cannot enter Y again
We can iterate this reasoning and eventually p1 will win
—> the worst case i1s when Y contains all proc’s and pi is the last winner

Lemma 2: If FLAG[i] = up, then TURN is set to i in at most (n-1)? iterations
Proof:

I[f TURN=i when FLAGi] is set > V

By Deadlock freedom of RR, at least one proc eventually unlocks

 If FLAG[TURN]=down, then TURN is increased; othw., by Lemmal pryrn
wins 1n at most (n-1) iterations (and increases TURN)

e Ifnow TURN=i then V; otherwise, we repeat the reasoning
The worst case is when TURN=(1+1) mod n when FLAG[1] is set ‘

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Bounded bypass of RR: if a process invokes RR.lock, then it enters the CS in at most
n(n-1) iterations

Proof:
» piinvokes lock = FLAG(1] is set to up
* By lemma 2, in (n-1)? itrerations TURN is set to i

* By lemma 1, in (n-1) iterations pi enters the CS
e (n-1)>+ (n-1)=n(n-1)

