MENTO IN ORMATICA

CONCURRENT SYSTEMS
LECTURE 8

Prof. Daniele Gorla

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Enhancing Liveness Properties

For MUTEX-based concurrency we saw that a weak liveness property (deadlock freedom) can be

always enhanced to a stronger one (bounded bypass)
We want to do the same in the framework of MUTEX-free concurrency

Contention manager: is an object that allows progress of processes by providing contention-free
periods for completing their invocations. It provides 2 operations:

* need_help(i) : invoked by p1 when it discovers that there is contention

* stop help(i) : invoked by pi when it terminates its current invocation

Enriched implementation: when a process realizes that there is contention, it invokes need_help;
when 1t completes its current operation, it invokes stop help.

REMARK: this is different from lock/unlock because in this framework we allow (fail-stop) failures,
that can also happen during the contention-free period
—> the contention-free period always terminates

PROBLEM: to distinguish a failure from a long delay, we need objects called failure detectors, that
provide processes information on the failed processes of the system.

—> according to the type/quality of the info, several F.D.s can be defined -

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

From obstruction-freedom to non-blocking

Eventually restricted leadership: given a non-empty set of process IDs X, the failure
detector 2y provides each process a local variable ev_leader(X) such that
1. (Validity) ev_leader(X) always contains a process 1D

2. (Eventual leadership) Eventually, all ev_leader(X) of all non-crashed processes of
X for ever contain the same process ID, that 1s one of them

REMARK: the moment in which all variables contain the same leader 1s unknown

NEED HELP[l..n] : SWMR atomic R/W boolean registers init at false

need help(i) := stop help(i) :=
NEED HELP[i] € true NEED HELP[i] € false
repeat

X € {j : NEED HELP[j]}

until ev leader(X) = 1

P N

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Thm.: the contention manager just seen transforms an obstr.-free implementation
into a non-blocking enriched implementation.

Proof:

By contr., 3 7 s.t. 3 many (> 0) op.’s invoked concurrently that never terminate

Let Q be the set of proc.’s that performed these invocations.

- By enrichment, eventually NEED HELP[i]=T (V 1 € Q) forever

- Since crashes are fail-stop, eventually NEED HELP[j] is no longer modified (V j € Q)
= 3 v’ >t when all proc.’s in Q compute the same X

OBS.: Q € X (it is possible that pj sets NEED HELP[j] and then fails)

By def. of 2y, 3 77 > 7’ s.t. all proc.’s in Q have the same ev_leader(X)
—> the leader belongs to Q, since it cannot be failed

—> this is the only process allowed to proceed
—> because run in isolation, it eventually terminates (bec. of obstr-freedom)

P N

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

On implementing ()

[t can be proved that there exists no wait-free implementation of (2 in an asynchronous
system with atomic R/W registers and any number of crashes

—> crashes are indistinguishable from long delays

- need of timing constraints

1. 3 time 7, time interval 4 and correct process p; s.t. after 7, every two consecutive
writes to a specific SWMR atomic R/W register by p; are at most 4 time units
apart one from the other

2. Lettbe an upper bound on the number of possible failing processes and f the real
number of processes failed (hence, 0 < f <t <n-1, with f unknown and t known in
advance).

Then, there are at least t—f correct processes different from p; with a timer s.t.
3 time 7, V time interval § , if their timer is set to § after 7, it expires at least
after §

REMARK: 7/, 7,, 4 and p; are all unknwon

P N

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

On implementing ()
IDEA:

 PROGRESS[1..n] 1s an array of SWMR atomic registers used by proc’s to signal
that they’re alive

- pi regularly increases PROGRESS1]
- p. eventually increases PROGRESS[L] every 4 time units at the latest

* pisuspects pj if p1 doesn’t see any progress of pj after a proper time interval (to be
guessed) set in its timer

* The leader 1s the least suspected process, or the one with smallest/biggest ID among
the least suspected ones (if there are more than one)

—> this changes in time, but not forever

Guessing the time duration for suspecting a process:

* SUSPECT]1,j] = #times p1 has suspected pj

* For all k, take the t+1 minimum values in SUSPECT[1..n, k]
* Sum them, to obtain Sy

* The interval to use in the timers is the minimum S,

—> it can be proved that this eventually becomes > 4 .

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

From obstruction-freedom to wait-freedom
Eventually perfect: the failure detector)P provides each process pi a local variable
suspected; such that

1. (Eventual completeness) Eventually, suspected; contains all the indexes of crashed
processes, for all correct p1

2. (Eventual accuracy) Eventually, suspected; contains only indexes of crashed
processes, for all correct p1

Def.: FD1 is stronger than FD2 if there exists an algorithm that builds FD2 from
instances of FD1 and atomic R/W registers

Prop.: OP is stronger than 0y .
Proof:
Forall 1
* 1& X =2 ev_leader(X) is any ID (and may change in time)
* 1€ X =2 ev _leadery(X) = min((IT \ suspected;) N X)
where I1 denotes the set of all proc. IDs

P N

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

From obstruction-freedom to wait-freedom
y is NOT stronger than P (so, P is strictly stronger).

One possible idea (WRONG!) 1s
* Run £} that eventually fixes py;
* After this, run 0y, that eventually fixes py,
* After this, run Qp (o that eventually fixes pg;
This eventually calculates the set of all non-crashed proc.’s
- PROBL.: we cannot know when a leader is elected (permanently)

The formal proof consists in showing that, if 2 was stronger than)P, then consensus
would be possible in an asynchronous system with crashes and atomic R/W registers.

P N

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

From obstruction-freedom to wait-freedom

We assume a weak timestamp generator, 1.e. a function such that, if it returns a positive value t to
some process, only a finite number of invocations can obtain a timestamp smaller than or equal to t

TS[1l..n] : SWMR atomic R/W registers init at 0

need help(i) :=
TS[i] € weak ts()
repeat
competing €< {j : TS[Jj]#0 A j & suspected;}
(t,J) € min{(TS[x],X) | X € competing}

until j = 1i

stop help(i) :=
TS[i] € O

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

Thm.: the contention manager just seen transforms an obstr-free implementation
into a wait-free enriched implementation.
Proof:
By contr., 3 an invocation of a correct p1 that never terminates; let ti be its timestamp
—> choose the minimum of such (ti,i)
By constr. of weak ts(), the set of invocations smaller than (ti,1) (call it I) is finite
* For every invocation € I from a process pj that crashes during its execution
—> pi will eventually and forever suspect pj (i.e., j € suspected;)
—> eventually, j € competing; and, thus, won’t prevent pi from proceeding
* Since (ti,i) is the minimum index of a non-terminating invocation
—> all invocations € I of correct processes terminate
—> if such processes invoke need help() again, they obtain greater indexes
—> eventually I gets emptied
Since pi is correct, eventually (for all pk correct):
* 1€ suspected,
e (ti,1) = min{(TS[x],x) | x \in competing, }
Hence, the invocation with index (ti,1) will eventually have exclusive execution
—> because of obstr.-freedom it eventually terminates

OBS: since non-blocking implies obstr.-fr., the Thm holds also for non-blocking impl. .

SAPIENZA

UNIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

On implementing P:

Every non-failed process has eventually an upper bound on the write delay

By properly setting timers, eventually crashed processes are distinguished from the
non-crashed ones by looking at the suspicions: for the crashed ones, this numbers
increases indefinitely; for non-crashed ones, some reset eventually happens.

