
CONCURRENT SYSTEMS
LECTURE 6
Prof. Daniele Gorla

Atomicity

We have a set of n sequential processes p1,…,pn that access m concurrent objects X1,…,Xm by
invoking operations of the form Xi.op(args)(ret).

When invoked by pj, the invocation Xi.op(args)(ret) is modeled by two events:
 inv[Xi.op(args) by pj] and res[Xi.op(ret) to pj].

A history (or trace) is a pair !𝐻 = (H , <H) where H is a set of events and <H is a total order on them

The semantics (of systems and/or objects) will be given as a set of traces.

A history is sequential if it is of the form inv res inv res … inv res inv inv inv … (where every res
is the return operation of the immediately preceeding inv)
 à a sequential history can be represented as a sequence of operations

A history is complete if every inv is eventually followed by a corresponding res, partial otherwise.

2

Linearizability
Def.: a complete history !𝐻	is linearizable if there exists a sequential history $𝑆	s.t.
1. ∀ X . $𝑆|X ∈ semantics(X)
2. ∀ p . !𝐻|p = $𝑆|p
3. If res[op] <H inv[op’], then res[op] <S inv[op’]

Given an history (𝐾, we can define a binary relation on events ⟶K s.t. (op, op’) ∈ ⟶K if and only if
 res[op] <K inv[op’]. We write op ⟶K op’ for denoting (op, op’) ∈ ⟶K.
Hence, condition 3 of the previous Def. requires that ⟶H ⊆ ⟶S .

EXAMPLE: Let Q be a queue; let p1 and p2 be such that
 Q.enq(a) Q.enq(b) Q.deq -> b

 p1 --|--------|---|--------|-----------|----------|------>

 p2 --------|--------|-----------|-----------|------------>

 Q.enq(c) Q.deq -> a

This corresponds to the history
 inv[Q.enq(a) by p1] inv[Q.enq(c) by p2] res[Q.enq(a) to p1] inv[Q.enq(b) by p1]
 res[Q.enq(c) by p2] res[Q.enq(b) by p1] inv[Q.deq() by p2] inv[Q.deq() by p2]
 res[Q.deq(a) to p2] res[Q.deq(b) to p1]
It can be linearized as [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.enq(c)() by p2] [Q.deq()(a) to p2]
 [Q.deq()(b) to p1]

3

Linearizability (cont.’d)
Now consider
 Q.enq(a) Q.enq(b) Q.deq -> a

 p1 --|--------|---|--------|-----------|----------|------>

 p2 --------|--------|-----------|-----------|------------>

 Q.enq(c) Q.deq -> c

The corresponding history can still be linearized as
 [Q.enq(c)() by p2] [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.deq()(c) to p2] [Q.deq()(a) to p1]

By contrast, the following are not linearizable histories:
 Q.enq(a) Q.enq(b) Q.deq -> a

 p1 --|--------|---|--------|-----------|----------|------>

 p2 --------|--------|-----------|-----------|------------>

 Q.enq(c) Q.deq -> a

 Q.enq(a) Q.enq(b) Q.deq -> b

 p1 --|--------|---|--------|-----------|----------|------>

 p2 --------|--------|-----------|-----------|------------>

 Q.enq(c) Q.deq -> c
4

Thm (compositionality): !𝐻 is linearizable if !𝐻|X is linearizable, for all X involved in H
Proof:
For all X, let #𝑆X be a linearization of !𝐻|X
 à #𝑆X defines a total order on the operations on X (call it ⟶X)
Let ⟶ denote ⟶H ∪ ∪X in H ⟶X (recall that a relation is a set of pairs, so here you

 take the union of all pairs of ⟶H and of all ⟶X)
We now show that ⟶ is acyclic.
1. It cannot have cycles with 1 edge (i.e., self loops): indeed, if op ⟶ op, this would

mean that res(op) < inv (op)
2. It cannot have cycles with 2 edges: by contr., assume that op ⟶ op’ ⟶ op
 - both arrows cannot be ⟶H nor ⟶X (for some X), otw. such relations were cyclic
 - it cannot be that one is ⟶X and the other ⟶Y (for some X ≠ Y), otw. op/op’ would
 be on 2 different objects
 Hence, it must be op ⟶X op’ ⟶H op (or vice versa)
 Then, op’ ⟶H op means that res(op’) <H inv(op)
 Since #𝑆X is a linearization of !𝐻|X and op/op’ are on X, this implies res(op’) <X inv(op),
 i.e., that op’ ⟶X op à ⟶X would be cyclic

5

3. It cannot have cycles with more than 2 edges: by contr., consider a shortest cycle
 - adjacent edges cannot belong to the same order (otw. the cycle would be
 shortable, because of transitivity)
 - adjacent edges cannot belong to orders on different objects
 Hence, at least one ⟶X exists, and it must be between two ⟶H , i.e.:
 op1 ⟶H op2 ⟶X op3 ⟶H op4
 is part of the shortest cycles chosen (possibly with op4=op1).

 op1 ⟶H op2 means that res(op1) <H inv(op2)
 op2 ⟶X op3 entails that inv(op2) <H res(op3)
 Indeed, if not, we would have that res(op3) <H inv(op2), since <H is
 a total order à we would have a cycle of length 2 ⚡
 op3 ⟶H op4 means that res(op3) <H inv(op4)

 By transitivity of <H, we would then have that res(op1) <H inv(op4), i.e. op1 ⟶H op4
 à in contradiction with having chosen a shortest cycle

6

Every DAG admits a topological order (i.e., a total order of its nodes that respects the
edges)

 à Let ⟶’ denote a topological order for ⟶
Let us then define a linearization of !𝐻 as follows:
 #𝑆 = inv(op1) res(op1) inv(op2) res(op2) … whenever op1 ⟶’ op2 ⟶’ …

 #𝑆 is clearly sequential; moreover:
1. For all X, #𝑆|X = #𝑆X (∈ semantics(X)). Indeed:
 - < !"! = ⟶X ⊆ ⟶|X ⊆ ⟶’|X = ⟶ !"|$	 = < !"|$

 - Since < !"! and < !"|$ are total orders on the same set of events (i.e., A|X),
 they must coincide

2. For all p, !𝐻|p = inv(op1p) res(op1p) inv(op2p) res(op2p)… (bec. p is sequential)
 = #𝑆|p (bec. op1p ⟶H op2p ⟶H … and ⟶H ⊆ ⟶’)

3. ⟶H ⊆ ⟶ ⊆ ⟶’ = ⟶S

7

Alternatives to Atomicity (1)
Sequential consistency

Let us define op ⟶proc op’ to hold whenever there exists a process p that issues both operations,
with res[op] happening before inv[op’].

Def.: a complete history !𝐻	is sequentially consistent if there exists a sequential history $𝑆	s.t.
1. ∀ X . $𝑆|X ∈ semantics(X) (like linearizability)
2. ∀ p . !𝐻|p = $𝑆|p (like linearizability)
3. ⟶proc ⊆ ⟶S (in place of ⟶H ⊆ ⟶S)

This is a more generous notion than linearizability.

EXAMPLE: Let !𝐻	be [Q.enq(a)() by p1] [Q.enq(b)() by p2] [Q.deq()(b) to p2]
 à not linearizable: ∎ the only possible linearization of !𝐻	is !𝐻	itself (because of cond.3)
 ∎ it violates the semantics of a queue (cond.1)
 à it is sequentially consistent, by swapping the first two actions, i.e. by considering $𝑆	 to be
 [Q.enq(b)() by p2] [Q.enq(a)() by p1] [Q.deq()(b) to p2]

8

Alternatives to Atomicity (1)
The problem with sequential consistency is that it is NOT compositional.

EXAMPLE
Consider the following two processes:

 p1: Q.enq(a) ; Q’.enq(b’) ; Q’.deq()àb’
 p2: Q’.enq(a’) ; Q.enq(b) ; Q.deq()àb

In isolation, both processes are sequentially consistent

However, no total order on the previous 6 operations respects the semantics of a queue:
• If p1 receives b’ from Q’.deq, we have that Q’.enq(a’) must arrive after Q’.enq(b’)
• To respect ⟶proc , also the remaining behaviour of p2 must arrive after
• Hence, Q.enq(a) arrived before Q.enq(b) and so it is not possible for p2 to receive b from its

Q.deq
Hence, we have two histories that are sequentially consistent but whose composition cannot be
sequentially consistent à no compositionality!

9

Alternatives to Atomicity (2)
Serializability (typical notion in databases)

• We now have transactions instead of processes
• Consequently, we have also two other kinds of events: abort(t) and commit(t)
• The constraint is that, in every history, we have at most one of these events for every

transaction; if the history is complete, we must have exactly one of these events for every
transaction

• A sequantial history is formed by committed transactions only

Def.: a complete history !𝐻	is serializable if there exists a sequential history $𝑆	s.t.
1. ∀ X . $𝑆|X ∈ semantics(X) (like linearizability)
2. S = {e ∈ H : e ∈ t ∈ committedTrans(!𝐻)}
3. ⟶trans ⊆ ⟶S (where ⟶trans is defined like ⟶proc in seq. cons.)

Again, this is a more generous notion than linearizability, but it is not compositional
 à consider the previous two examples, where instead of processes, you have transactions 10

