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Atomicity

We have a set of n sequential processes p1,…,pn that access m concurrent objects X1,…,Xm by 
invoking operations of the form  Xi.op(args)(ret). 

When invoked by pj, the invocation  Xi.op(args)(ret)  is modeled by two events: 
  inv[Xi.op(args) by pj]    and    res[Xi.op(ret) to pj].

A history (or trace) is a pair !𝐻 = (H , <H) where H is a set of events and <H is a total order on them

The semantics (of systems and/or objects) will be given as a set of traces.

A history is sequential if it is of the form   inv res inv res … inv res inv inv inv …  (where every res 
is the return operation of the immediately preceeding inv)
 à a sequential history can be represented as a sequence of operations

A history is complete if every inv is eventually followed by a corresponding res, partial otherwise.
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Linearizability
Def.: a complete history !𝐻	is linearizable if there exists a sequential history $𝑆	s.t.
1. ∀ X . $𝑆|X ∈ semantics(X)
2. ∀ p . !𝐻|p = $𝑆|p
3. If res[op] <H inv[op’], then res[op] <S inv[op’]

Given an history (𝐾, we can define a binary relation on events  ⟶K  s.t. (op, op’) ∈ ⟶K   if and only if  
     res[op] <K inv[op’]. We write  op ⟶K op’  for denoting  (op, op’) ∈ ⟶K.
Hence, condition 3 of the previous Def. requires that  ⟶H ⊆ ⟶S .

EXAMPLE: Let Q be a queue; let p1 and p2 be such that
       Q.enq(a)   Q.enq(b)       Q.deq -> b

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> a

This corresponds to the history
 inv[Q.enq(a) by p1] inv[Q.enq(c) by p2] res[Q.enq(a) to p1] inv[Q.enq(b) by p1]
 res[Q.enq(c) by p2] res[Q.enq(b) by p1] inv[Q.deq() by p2] inv[Q.deq() by p2]
 res[Q.deq(a) to p2] res[Q.deq(b) to p1]
It can be linearized as [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.enq(c)() by p2] [Q.deq()(a) to p2] 
     [Q.deq()(b) to p1]
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Linearizability (cont.’d)
Now consider
       Q.enq(a)   Q.enq(b)       Q.deq -> a

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> c

The corresponding history can still be linearized as 
             [Q.enq(c)() by p2] [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.deq()(c) to p2] [Q.deq()(a) to p1]

By contrast, the following are not linearizable histories:
       Q.enq(a)   Q.enq(b)       Q.deq -> a

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> a

       Q.enq(a)   Q.enq(b)       Q.deq -> b

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> c
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Thm (compositionality): !𝐻 is linearizable if !𝐻|X is linearizable, for all X involved in H
Proof:
For all X, let #𝑆X be a linearization of !𝐻|X
 à #𝑆X defines a total order on the operations on X (call it ⟶X)
Let  ⟶  denote   ⟶H  ∪  ∪X in H ⟶X  (recall that a relation is a set of pairs, so here you

      take the union of all pairs of ⟶H and of all ⟶X ) 
We now show that  ⟶  is acyclic.
1. It cannot have cycles with 1 edge (i.e., self loops): indeed, if op ⟶ op, this would 

mean that res(op) < inv (op)
2. It cannot have cycles with 2 edges: by contr., assume that op ⟶ op’ ⟶ op
 - both arrows cannot be  ⟶H nor ⟶X (for some X), otw. such relations were cyclic
 - it cannot be that one is ⟶X and the other ⟶Y (for some X ≠ Y), otw. op/op’ would 
   be on 2 different objects
    Hence, it must be op ⟶X op’ ⟶H op  (or vice versa)
    Then, op’ ⟶H op means that res(op’) <H inv(op)
    Since #𝑆X is a linearization of !𝐻|X and op/op’ are on X, this implies res(op’) <X inv(op),
 i.e., that  op’ ⟶X op à   ⟶X would be cyclic
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3. It cannot have cycles with more than 2 edges: by contr., consider a shortest cycle
 - adjacent edges cannot belong to the same order (otw. the cycle would be
   shortable, because of transitivity)
 - adjacent edges cannot belong to orders on different objects
    Hence, at least one ⟶X exists, and it must be between two ⟶H , i.e.:
  op1 ⟶H op2 ⟶X op3 ⟶H op4
    is part of the shortest cycles chosen (possibly with op4=op1).

 op1 ⟶H op2 means that res(op1) <H inv(op2)
 op2 ⟶X op3 entails that inv(op2) <H res(op3)
      Indeed, if not, we would have that res(op3) <H inv(op2), since <H is
    a total order      à  we would have a cycle of length 2 ⚡
 op3 ⟶H op4 means that res(op3) <H inv(op4)

 By transitivity of <H, we would then have that res(op1) <H inv(op4), i.e. op1 ⟶H op4
  à in contradiction with having chosen a shortest cycle
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Every DAG admits a topological order (i.e., a total order of its nodes that respects the 
edges)

   à   Let  ⟶’  denote a topological order for  ⟶
Let us then define a linearization of !𝐻 as follows:
  #𝑆 = inv(op1) res(op1) inv(op2) res(op2) …   whenever   op1 ⟶’ op2 ⟶’ …

 #𝑆 is clearly sequential; moreover:
1. For all X, #𝑆|X = #𝑆X  (∈ semantics(X)). Indeed:
 -    < !"!  =  ⟶X  ⊆  ⟶|X  ⊆  ⟶’|X  =  ⟶ !"|$	 = < !"|$

 - Since < !"!  and  < !"|$ are total orders on the same set of events (i.e., A|X),
   they must coincide

2. For all p, !𝐻|p =  inv(op1p) res(op1p) inv(op2p) res(op2p)… (bec. p is sequential)
             = #𝑆|p           (bec. op1p ⟶H op2p ⟶H …  and ⟶H ⊆ ⟶’)

3. ⟶H  ⊆  ⟶  ⊆  ⟶’ = ⟶S
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Alternatives to Atomicity (1)
Sequential consistency

Let us define  op ⟶proc op’ to hold whenever there exists a process p that issues both operations, 
with  res[op]  happening before  inv[op’].

Def.: a complete history !𝐻	is sequentially consistent if there exists a sequential history $𝑆	s.t.
1. ∀ X . $𝑆|X ∈ semantics(X)  (like linearizability)
2. ∀ p . !𝐻|p = $𝑆|p   (like linearizability)
3. ⟶proc ⊆ ⟶S   (in place of ⟶H ⊆ ⟶S)

This is a more generous notion than linearizability.

EXAMPLE: Let !𝐻	be [Q.enq(a)() by p1] [Q.enq(b)() by p2] [Q.deq()(b) to p2]
 à not linearizable:   ∎ the only possible linearization of !𝐻	is !𝐻	itself (because of cond.3) 
        ∎ it violates the semantics of a queue (cond.1)
 à it is sequentially consistent, by swapping the first two actions, i.e. by considering $𝑆	 to be 
      [Q.enq(b)() by p2] [Q.enq(a)() by p1] [Q.deq()(b) to p2]
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Alternatives to Atomicity (1)
The problem with sequential consistency is that it is NOT compositional.

EXAMPLE
Consider the following two processes:

 p1: Q.enq(a) ; Q’.enq(b’) ; Q’.deq()àb’ 
 p2: Q’.enq(a’) ; Q.enq(b) ; Q.deq()àb

In isolation, both processes are sequentially consistent

However, no total order on the previous 6 operations respects the semantics of a queue:
• If p1 receives b’ from Q’.deq, we have that Q’.enq(a’) must arrive after Q’.enq(b’)
• To respect ⟶proc , also the remaining behaviour of p2 must arrive after
• Hence, Q.enq(a) arrived before Q.enq(b) and so it is not possible for p2 to receive b from its 

Q.deq
Hence, we have two histories that are sequentially consistent but whose composition cannot be 
sequentially consistent à no compositionality!
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Alternatives to Atomicity (2)
Serializability (typical notion in databases)

• We now have transactions instead of processes
• Consequently, we have also two other kinds of events: abort(t) and commit(t)
• The constraint is that, in every history, we have at most one of these events for every 

transaction; if the history is complete, we must have exactly one of these events for every 
transaction

• A sequantial history is formed by committed transactions only

Def.: a complete history !𝐻	is serializable if there exists a sequential history $𝑆	s.t.
1. ∀ X . $𝑆|X ∈ semantics(X)  (like linearizability)
2. S = {e ∈ H : e ∈ t ∈ committedTrans(!𝐻)}
3. ⟶trans ⊆ ⟶S   (where ⟶trans is defined like  ⟶proc in seq. cons.)

Again, this is a more generous notion than linearizability, but it is not compositional
 à consider the previous two examples, where instead of processes, you have transactions 10


