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How can we balance 
exploration with exploitation?
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Exploration exploitation 
trade-off
¡ Rewards evaluate actions taken (evaluative feedback)

¡ Evaluative feedback depends on the action taken

¡ There is need for active exploration (explicit search for 
good behavior)

¡ Should the agent explore or exploit?

¡ Let us consider a simplified version of RL problems
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K-armed bandit problem
¡ Problem: you are faced repeatedly with a choice among K 

different options, or actions

¡ After each choice you receive a numerical reward chosen from 
a stationary probability distribution that depends on the action 
you selected

¡ Objective: maximize the expected total reward over some time 
period (ex. 1000 action selections, or time-steps)
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K-armed bandit problem
¡ Analogy with slot 

machine “one-
armed bandit”  
except that it has k 
levers instead of 
one 
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¡ Each action selection is like a play of one of the slot machine’s 
levers, and the rewards are the payoffs for hitting the jackpot

¡ Through repeated action selections you are to maximize your 
winning by concentrating your actions on the best levers
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K-armed bandit
¡ Formalization

¡ Set of action A (or “arms”)

¡ Reward function R that follows an unknown probability distributions

¡ There is only one state

¡ At each step t, the agent selects an action in A

¡ The environment generates a reward

¡ The goal is to maximize the cumulative reward

Autonomous Networking A.Y. 21-22 7



Doctor treatments

8Bandits Rewards

K=3

Agent

Rewards could be the patient's welfare 
after receiving treatmentAutonomous Networking A.Y. 21-22



Action-value function
¡ For the doctor to decide which action is best, we must define the 

value of taking each action.

¡ We call these values the action values or the action value 
function

¡ Action value: the value of selecting an action a is defined as the 
expected reward we receive by taking that action

¡ The goal of the agent is to maximise the expected reward
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objective is to maximize the expected total reward over some time period, for example,
over 1000 action selections, or time steps.

This is the original form of the k-armed bandit problem, so named by analogy to a slot
machine, or “one-armed bandit,” except that it has k levers instead of one. Each action
selection is like a play of one of the slot machine’s levers, and the rewards are the payo↵s
for hitting the jackpot. Through repeated action selections you are to maximize your
winnings by concentrating your actions on the best levers. Another analogy is that of
a doctor choosing between experimental treatments for a series of seriously ill patients.
Each action is the selection of a treatment, and each reward is the survival or well-being
of the patient. Today the term “bandit problem” is sometimes used for a generalization
of the problem described above, but in this book we use it to refer just to this simple
case.

In our k -armed bandit problem, each of the k actions has an expected or mean reward
given that that action is selected; let us call this the value of that action. We denote the
action selected on time step t as At, and the corresponding reward as Rt. The value then
of an arbitrary action a, denoted q⇤(a), is the expected reward given that a is selected:

q⇤(a)
.
= E[Rt | At =a] .

If you knew the value of each action, then it would be trivial to solve the k -armed bandit
problem: you would always select the action with highest value. We assume that you do
not know the action values with certainty, although you may have estimates. We denote
the estimated value of action a at time step t as Qt(a). We would like Qt(a) to be close
to q⇤(a).

If you maintain estimates of the action values, then at any time step there is at least
one action whose estimated value is greatest. We call these the greedy actions. When you
select one of these actions, we say that you are exploiting your current knowledge of the
values of the actions. If instead you select one of the nongreedy actions, then we say you
are exploring, because this enables you to improve your estimate of the nongreedy action’s
value. Exploitation is the right thing to do to maximize the expected reward on the one
step, but exploration may produce the greater total reward in the long run. For example,
suppose a greedy action’s value is known with certainty, while several other actions are
estimated to be nearly as good but with substantial uncertainty. The uncertainty is
such that at least one of these other actions probably is actually better than the greedy
action, but you don’t know which one. If you have many time steps ahead on which
to make action selections, then it may be better to explore the nongreedy actions and
discover which of them are better than the greedy action. Reward is lower in the short
run, during exploration, but higher in the long run because after you have discovered
the better actions, you can exploit them many times. Because it is not possible both to
explore and to exploit with any single action selection, one often refers to the “conflict”
between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a complex
way on the precise values of the estimates, uncertainties, and the number of remaining
steps. There are many sophisticated methods for balancing exploration and exploitation
for particular mathematical formulations of the k -armed bandit and related problems.



How can we estimate 
action-value?

¡ Sample-average method
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Doctor treatments

11Actions Rewards

K=3

Agent

patient's w
elfare after 

receiving treatm
ent

Let’s use the change in blood pressure 
after receiving the treatment.Autonomous Networking A.Y. 21-22



Calculating q*(a)

12

Each treatment may yield rewards following different probability distributions

Bernoulli

Binomial

Uniform

Q* is the mean of the distributions for each actionAutonomous Networking A.Y. 21-22



Sample-average estimate
¡ The reward distribution is not known → the doctor will run many 

trial to learn about each treatment

¡ The estimated value for action a is the sum of rewards observed 
when taking action a divided by the total number of times 
action a has been taken

¡ Where 1predicate denotes the random variable that is 1 if 
predicate is true and 0 if it is not.

¡ If the denominator is zero, then we define Qt(a)=0
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However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k -armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k -armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability ", instead



Example 
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A reward of 1 if 
treatment succeeds,
0 otherwise

Q1(R)=0 Q1(Y)=0 Q1(B)=0Q1(R)=1Q1(R)=0.5 Q1(Y)=1Q1(Y)=0.5



Example 

15

A reward of 1 if 
treatment succeeds,
0 otherwise

Q1(R)=0.33 Q1(Y)=0.66 Q1(B)=0.5

Actions are 
selected 
randomly
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How to select an action
¡ Random (previous example)

¡ Greedy

¡ ε-greedy
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Greedy action
¡ In reality, our doctors would not randomly assign treatments to 

their patients.

¡ Instead, they would probably assign the treatment that they 
currently think is the best (trying to get the most reward he can 
right now.)

¡ We call this method of choosing actions greedy.

¡ The greedy action is the action that currently has the largest 
estimated value.
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Q12( )=0.25 Q12( )=0.75 Q12( )=0.5



Greedy action
¡ Selecting the greedy action means the agent is exploiting its 

current knowledge.

¡ We can compute the greedy action by taking the argmax of our 
estimated values
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However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k -armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k -armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability ", instead

¡ Greedy action selection always exploits current knowledge to 
maximize immediate reward

¡ It spends no time at all sampling apparently inferior actions to see 
if they might be better
¡ Get stuck on suboptimal actions (no exploration)



ε-greedy
¡ How do we choose when to exploit and when to explore?

¡ Behave greedly most of time, but every once in a while (with 
small probability ε), instead select randomly from among all 
actions with equal probability, independently of the action 
value estimates
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¡ As the number of step increases Qt(a) converges to q*(a)



Exercise 1 
In ε-greedy action selection, for the case of two actions and 
ε= 0.5, what is the probability that the greedy action is 
selected? 
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Exercise 2
Consider a k-armed bandit problem with k = 4 actions, denoted 1, 2, 3, and 4. 

Consider applying to this problem a bandit algorithm using ε-greedy action 
selection, sample-average action-value estimates, and initial estimates of Q1(a) = 
0, for all a. 

Suppose the initial sequence of actions and rewards is 

A1 = 1 R1 =1

A2 =2 R2 =1 

A3 =2 R3 =2 

A4 =2 R4 =2 

A5 =3 R5 =0 

On some of these time steps the ε case may have occurred, causing an action to 
be selected at random. On which time steps did this definitely occur? On which 
time steps could this possibly have occurred? 
Autonomous Networking A.Y. 21-22 21



How to estimate action-
value

¡ Sample-average method

¡ Incremental 
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Incremental formula for 
action-value
¡ When we perform many trials we have many values to 

calculate average action-value

¡ Can we compute it incrementally?

¡ To simplify notation we concentrate on a single action. 

¡ Let Ri now denote the reward received after the ith selection of 
this action, and let Qn denote the estimate of its action value 
after it has been selected n-1 times 

Autonomous Networking A.Y. 21-22 23

2.4. Incremental Implementation 31

and constant per-time-step computation.
To simplify notation we concentrate on a single action. Let Ri now denote the reward

received after the ith selection of this action, and let Qn denote the estimate of its action
value after it has been selected n� 1 times, which we can now write simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n� 1
.

The obvious implementation would be to maintain a record of all the rewards and then
perform this computation whenever the estimated value was needed. However, if this is
done, then the memory and computational requirements would grow over time as more
rewards are seen. Each additional reward would require additional memory to store it
and additional computation to compute the sum in the numerator.

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

 
Rn +

n�1X

i=1

Ri

!

=
1

n

 
Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
requires memory only for Qn and n, and only the small computation (2.3) for each new
reward.

This update rule (2.3) is of a form that occurs frequently throughout this book. The
general form is

NewEstimate OldEstimate + StepSize

h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by taking

a step toward the “Target.” The target is presumed to indicate a desirable direction in
which to move, though it may be noisy. In the case above, for example, the target is the
nth reward.

Note that the step-size parameter (StepSize) used in the incremental method (2.3)
changes from time step to time step. In processing the nth reward for action a, the



Incremental formula for 
action-value
¡ Given Qn and the nth reward, Rn, the new average of all n 

rewards can be computed by 
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which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
requires memory only for Qn and n, and only the small computation (2.3) for each new
reward.

This update rule (2.3) is of a form that occurs frequently throughout this book. The
general form is

NewEstimate OldEstimate + StepSize

h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by taking

a step toward the “Target.” The target is presumed to indicate a desirable direction in
which to move, though it may be noisy. In the case above, for example, the target is the
nth reward.

Note that the step-size parameter (StepSize) used in the incremental method (2.3)
changes from time step to time step. In processing the nth reward for action a, the

which holds even for n=1,
obtaining Q2=R1Autonomous Networking A.Y. 21-22



Incremental formula for 
action-value

¡ The general form for the incremental update rule is

¡ [Target – OldEstimate] is an error in the estimate

¡ StepSize changes from time step to time step
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Pseudocode for bandit
¡ The function bandit(a) is assumed to take an action and return a 

corresponding reward. 
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method uses the step-size parameter 1

n
. In this book we denote the step-size parameter

by ↵ or, more generally, by ↵t(a).
Pseudocode for a complete bandit algorithm using incrementally computed sample

averages and "-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Loop forever:

A 
⇢

argmax
a
Q(a) with probability 1� " (breaking ties randomly)

a random action with probability "
R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are e↵ectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average Qn of the n� 1 past rewards is modified to be

Qn+1

.
= Qn + ↵

h
Rn �Qn

i
, (2.5)

where the step-size parameter ↵ 2 (0, 1] is constant. This results in Qn+1 being a weighted
average of past rewards and the initial estimate Q1:

Qn+1 = Qn + ↵
h
Rn �Qn

i

= ↵Rn + (1� ↵)Qn

= ↵Rn + (1� ↵) [↵Rn�1 + (1� ↵)Qn�1]

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2Qn�1

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2↵Rn�2 +

· · · + (1� ↵)n�1↵R1 + (1� ↵)nQ1

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi. (2.6)



How to estimate action-
value

¡ Sample-average method

¡ Incremental
¡ Stationary problems
¡ Nonstationary problems
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Nonstationary problem
¡ The averaging methods discussed so far are appropriate for 

stationary bandit problems, that is, for bandit problems in which 
the reward probabilities do not change over time

¡ There are often nonstationary problems, in which reward 
probabilities change over time
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Example 
¡ Doctor trials

¡ What if one of the treatments was more effective under certain 
conditions? Specifically, let's say the treatment B is more 
effective during the winter months.
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¡ The distribution of rewards changes with time

¡ The doctor is unaware of this change but would like to adapt to it



Tracking a nonstationary 
problem
¡ One option is to use a fixed step size.

¡ If step-size parameter is constant then the most recent 
rewards affect the estimate more than older rewards.
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method uses the step-size parameter 1

n
. In this book we denote the step-size parameter

by ↵ or, more generally, by ↵t(a).
Pseudocode for a complete bandit algorithm using incrementally computed sample

averages and "-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Loop forever:

A 
⇢

argmax
a
Q(a) with probability 1� " (breaking ties randomly)

a random action with probability "
R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are e↵ectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average Qn of the n� 1 past rewards is modified to be

Qn+1

.
= Qn + ↵

h
Rn �Qn

i
, (2.5)

where the step-size parameter ↵ 2 (0, 1] is constant. This results in Qn+1 being a weighted
average of past rewards and the initial estimate Q1:

Qn+1 = Qn + ↵
h
Rn �Qn

i

= ↵Rn + (1� ↵)Qn

= ↵Rn + (1� ↵) [↵Rn�1 + (1� ↵)Qn�1]

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2Qn�1

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2↵Rn�2 +

· · · + (1� ↵)n�1↵R1 + (1� ↵)nQ1

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi. (2.6)

¡ Where ⍺ ∈ (0,1]



Tracking a nonstationary 
problem
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How to select an action
¡ Random

¡ Greedy

¡ ε-greedy

¡ Optimistic initial values
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Optimistic initial values
¡ All methods seen so far are dependent to some extent on 

the initial action-value estimates, Q1(a)

¡ Initial action values can be used as a simple way to 
encourage exploration

¡ What if our doctor performing medical trials was initially very 
optimistic about the outcome of each treatment?

¡ Perhaps the doctor starts with the assumption that each 
treatment is 100% effective, until shown otherwise.
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Example 
¡ Our doctor would begin prescribing treatments at random, until 

one of the treatments fails to cure a patient

¡ The doctor might then choose from the other two treatments at 
random

¡ Again, the doctor would continue until one of these treatments 
fails to work
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Example 

¡ Previously the initial 
estimated values were 
assumed to be 0, which is 
not necessarily optimistic

¡ Now, our doctor 
optimistically assumes that 
each treatment is highly 
effective before running 
the trial.

¡ let's make the initial value 
for each action 2
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Example 
¡ A reward of 1 if 

treatment 
succeeds, 0 
otherwise

Autonomous Networking A.Y. 21-22 37

32 Chapter 2: Multi-armed Bandits

method uses the step-size parameter 1

n
. In this book we denote the step-size parameter

by ↵ or, more generally, by ↵t(a).
Pseudocode for a complete bandit algorithm using incrementally computed sample

averages and "-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Loop forever:

A 
⇢

argmax
a
Q(a) with probability 1� " (breaking ties randomly)

a random action with probability "
R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are e↵ectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average Qn of the n� 1 past rewards is modified to be

Qn+1

.
= Qn + ↵

h
Rn �Qn

i
, (2.5)

where the step-size parameter ↵ 2 (0, 1] is constant. This results in Qn+1 being a weighted
average of past rewards and the initial estimate Q1:

Qn+1 = Qn + ↵
h
Rn �Qn

i

= ↵Rn + (1� ↵)Qn

= ↵Rn + (1� ↵) [↵Rn�1 + (1� ↵)Qn�1]

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2Qn�1

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2↵Rn�2 +

· · · + (1� ↵)n�1↵R1 + (1� ↵)nQ1

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi. (2.6)

Let ⍺=0.5
Q1(a)=2
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Optimistic initial values
¡ All actions are tried several times before the value 

estimates converge

¡ The system does a fair amount of exploration even if 
greedy actions are selected all the time

Autonomous Networking A.Y. 21-22 38



Conclusions 
¡ Methods to evaluate action values
¡ Sample average
¡ Incrementally
¡ Stationary problems
¡ Nonstationary problems

¡ Strategies for action selection
¡ Random
¡ Greedy
¡ ε-greedy
¡ Optimistic initial values
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