
Autonomous
Networking
Gaia Maselli
Dept. of Computer Science

Today’s plan
¡ Example of value function calculation

¡ Optimal policy

¡ Q-learning

Autonomous Networking A.Y. 21-22 2

Bellman Expectation Equation
for v𝜋 (2)

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for v⇡ (2)

v�(s0) �!s0

v�(s) �!s

r

a

v⇡(s) =
X

a2A
⇡(a|s)

R

a
s + �

X

s02S
P

a
ss0v⇡(s

0)

!

Autonomous Networking A.Y. 21-22 3

Example: Bellman Expectation
Equation in Student MDP

Autonomous Networking A.Y. 21-22 4

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Expectation Equation

Example: Bellman Expectation Equation in Student MDP

-1.3 2.7 7.4

0-2.3

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

7.4 = 0.5 * (1 + 0.2* -1.3 + 0.4 * 2.7 + 0.4 * 7.4)
+ 0.5 * 10

Example: Gridworld

Autonomous Networking A.Y. 21-22 5

Example: Gridworld

Autonomous Networking A.Y. 21-22 6

Example: Gridworld

Autonomous Networking A.Y. 21-22 7

Example: Gridworld

Autonomous Networking A.Y. 21-22 8

Example: Gridworld

Autonomous Networking A.Y. 21-22 9

Example: Gridworld

Autonomous Networking A.Y. 21-22 10

Example: Gridworld

Autonomous Networking A.Y. 21-22 11

Example: Gridworld

Autonomous Networking A.Y. 21-22 12

C

A

D

B+5

+5

+5

+0

+0
+0

+0 +0

+0 +0

+0

+0

0.5

0.25
0.25

Example: Gridworld

Autonomous Networking A.Y. 21-22 13

𝛄=0.7

Example: Gridworld

Autonomous Networking A.Y. 21-22 14

Example: Gridworld

Autonomous Networking A.Y. 21-22 15

Example: Gridworld

Autonomous Networking A.Y. 21-22 16

Example: Gridworld

Autonomous Networking A.Y. 21-22 17

Example: Gridworld

Autonomous Networking A.Y. 21-22 18

Example: Gridworld

Autonomous Networking A.Y. 21-22 19

Example: Gridworld

Autonomous Networking A.Y. 21-22 20

Example: Gridworld

Autonomous Networking A.Y. 21-22 21

Policies
¡ Up to this point, we've generally talked about a policy as

something that is given.

¡ The policy specifies how an agent behaves.

¡ Given this way of behaving, we then aim to find the value
function.

¡ But the goal of reinforcement learning is not just to evaluate
specific policies.

¡ Ultimately, we want to find a policy that obtains as much reward
as possible in the long run

Autonomous Networking A.Y. 21-22 22

How to find the best possible
solution to MDP

How to find the optimal policy

Autonomous Networking A.Y. 21-22 23

Optimal value function
¡ To define an optimal policy, we first have to understand what it

means for one policy to be better than another

24

The optimal state-value function v∗(s) is the maximum value function
over all policies

𝑉∗(s) = max
!

𝑉𝜋(s)

The optimal action-value function q∗(s,a) is the maximum action-
value function over all policies

𝑞∗(s,a) = max
!

𝑞𝜋(s,a)

Definition

Definition

¡ The optimal value function specifies the best possible performance in
the MDP

¡ An MDP is “solved” when we know the optimal value fn.

Example: Optimal Value
Function for Student MDP

Lecture 2: Markov Decision Processes

Markov Decision Processes

Optimal Value Functions

Example: Optimal Value Function for Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

v*(s) for γ =1

Autonomous Networking A.Y. 21-22 25

• V* says how good is to be in each state
• it does say how to behave

Example: Optimal Action-Value
Function for Student MDP

Lecture 2: Markov Decision Processes

Markov Decision Processes

Optimal Value Functions

Example: Optimal Action-Value Function for Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

q*(s,a) for γ =1

q* =5

q* =6

q* =6

q* =5

q* =8

q* = 0

q* =10

q* =8.4

Autonomous Networking A.Y. 21-22 26

Optimal policy

¡ Define a partial ordering over policies

Autonomous Networking A.Y. 21-22 27

𝜋 ≥ 𝜋’ if 𝑉!(𝑠) ≥ 𝑉!!(𝑠), ∀𝑠

For any Markov Decision Process
• There exists an optimal policy 𝜋∗ that is better than or

equal to all other policies, 𝜋 ∗≥ 𝜋, ∀𝜋
• All optimal policies achieve the optimal value function,
𝑉!∗(𝑠) ≥ 𝑉∗(𝑠)

• All optimal policies achieve the optimal action-value
function, 𝑞!∗(𝑠, 𝑎) ≥ 𝑞∗(𝑠, 𝑎)

Theorem

Finding an optimal policy
¡ An optimal policy can be found by maximising over q∗(s,a)

Autonomous Networking A.Y. 21-22 28

Lecture 2: Markov Decision Processes

Markov Decision Processes

Optimal Value Functions

Finding an Optimal Policy

An optimal policy can be found by maximising over q⇤(s, a),

⇡⇤(a|s) =

(
1 if a = argmax

a2A
q⇤(s, a)

0 otherwise

There is always a deterministic optimal policy for any MDP

If we know q⇤(s, a), we immediately have the optimal policy¡ There is always a deterministic optimal policy for any MDP

¡ If we know q∗(s,a), we immediately have the optimal policy

Example: Optimal Policy for
Student MDP

Autonomous Networking A.Y. 21-22 29

Lecture 2: Markov Decision Processes

Markov Decision Processes

Optimal Value Functions

Example: Optimal Policy for Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

π*(a|s) for γ =1

q* =5

q* =6

q* =6

q* =5

q* =8

q* =0

q* =10

q* =8.4

How do we get q* values?

Autonomous Networking A.Y. 21-22 30

Bellman Optimality
Equation for v∗
¡ The optimal value functions are recursively related by

the Bellman optimality equations:

Autonomous Networking A.Y. 21-22 31

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for v⇤

The optimal value functions are recursively related by the Bellman
optimality equations:

v⇤(s) �!s

q⇤(s, a) �!a

v⇤(s) = max
a

q⇤(s, a)

Bellman Optimality
Equation for Q∗

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for Q⇤

q⇤(s, a) �!s, a

v⇤(s
0) �!s0

r

q⇤(s, a) = R
a
s + �

X

s02S
P

a
ss0v⇤(s

0)

Autonomous Networking A.Y. 21-22 32

Bellman Optimality
Equation for V∗ (2)

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for V ⇤
(2)

v⇤(s
0) �!s0

v⇤(s) �!s

a

r

v⇤(s) = max
a

R
a
s + �

X

s02S
P

a
ss0v⇤(s

0)

Autonomous Networking A.Y. 21-22 33

Bellman Optimality
Equation for Q∗ (2)

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for Q⇤
(2)

q⇤(s
0, a0) �!a0

r

q⇤(s, a) �!s, a

s0

q⇤(s, a) = R
a
s + �

X

s02S
P

a
ss0max

a0
q⇤(s

0, a0)

Autonomous Networking A.Y. 21-22 34

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Optimality Equation

Example: Bellman Optimality Equation in Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

6 = max {-2 + 8, -1 + 6}

Example: Bellman Optimality
Equation in Student MDP

Autonomous Networking A.Y. 21-22 35

Solving the Bellman
Optimality Equation

¡ Bellman Optimality Equation is non-linear

¡ No closed form solution (in general)

¡ Many iterative solution methods
¡ Value Iteration
¡ Policy Iteration
¡ Q-learning
¡ Sarsa

Autonomous Networking A.Y. 21-22 36

Q-learning

Autonomous Networking A.Y. 21-22 37

Temporal Difference (TD) Learning

Off-policy

Q-learning (off-policy TD control)

Temporal Difference(TD)
learning
¡ TD methods learn directly from episodes of experience (learns

online after every step)

¡ TD is model-free: no knowledge of MDP transitions / rewards

¡ TD learns from incomplete episodes, by bootstrapping

¡ TD updates a guess towards a guess

Autonomous Networking A.Y. 21-22 38

TD example: driving home
¡ Each day as you drive home from work, you try to predict how

long it will take to get home

¡ As you wait in traffic, you already know that your initial
estimate of 30 minutes was too optimistic. Must you wait until
you get home before increasing your estimate for the initial
state?

Autonomous Networking A.Y. 21-22 39

122 Chapter 6: Temporal-Di↵erence Learning

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the time,
the day of week, the weather, and anything else that might be relevant. Say on this
Friday you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain. Tra�c
is often slower in the rain, so you reestimate that it will take 35 minutes from then, or a
total of 40 minutes. Fifteen minutes later you have completed the highway portion of
your journey in good time. As you exit onto a secondary road you cut your estimate of
total travel time to 35 minutes. Unfortunately, at this point you get stuck behind a slow
truck, and the road is too narrow to pass. You end up having to follow the truck until
you turn onto the side street where you live at 6:40. Three minutes later you are home.
The sequence of states, times, and predictions is thus as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We are
not discounting (� = 1), and thus the return for each state is the actual time to go from
that state. The value of each state is the expected time to go. The second column of
numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.1 (left). The red arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1), for
↵ = 1. These are exactly the errors between the estimated value (predicted time to go)
in each state and the actual return (actual time to go). For example, when you exited
the highway you thought it would take only 15 minutes more to get home, but in fact it
took 23 minutes. Equation 6.1 applies at this point and determines an increment in the
estimate of time to go after exiting the highway. The error, Gt � V (St), at this time is
eight minutes. Suppose the step-size parameter, ↵, is 1/2. Then the predicted time to go
after exiting the highway would be revised upward by four minutes as a result of this
experience. This is probably too large a change in this case; the truck was probably just
an unlucky break. In any event, the change can only be made o✏ine, that is, after you
have reached home. Only at this point do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your o�ce that it will take 30
minutes to drive home, but then you become stuck in a massive tra�c jam. Twenty-five
minutes after leaving the o�ce you are still bumper-to-bumper on the highway. You now

1If this were a control problem with the objective of minimizing travel time, then we would of course
make the rewards the negative of the elapsed time. But because we are concerned here only with
prediction (policy evaluation), we can keep things simple by using positive numbers.

On and Off-Policy
Learning
¡ On-policy learning
¡ “Learn on the job”
¡ Learn about policy 𝝅 from experience sampled from 𝝅

¡ Off-policy learning
¡ “Look over someone’s shoulder”
¡ Learn about policy 𝝅 from experience sampled from 𝜇

Autonomous Networking A.Y. 21-22 40

Off-policy
¡ Evaluate target policy 𝝅(a|s) to compute v𝝅(s) or q𝝅(s,a)

¡ While following behaviour policy 𝜇(a|s)

{S1,A1,R2,...,ST} ∼ 𝜇

¡ Why is this important?

¡ Learn from observing humans or other agents

¡ Re-use experience generated from old policies 𝝅1, 𝝅2, ..., 𝝅t−1

¡ Learn about optimal policy while following exploratory policy

¡ Learn about multiple policies while following one policy

Autonomous Networking A.Y. 21-22 41

Q-Learning Control
Algorithm

¡ Q-learning control converges to the optimal action-value function,
Q(s, a) → q∗(s, a)

Autonomous Networking A.Y. 21-22 42

Lecture 5: Model-Free Control

O↵-Policy Learning

Q-Learning

Q-Learning Control Algorithm

S,A

R

A’

S’

Q(S ,A) Q(S ,A) + ↵

✓
R + � max

a0
Q(S 0, a0)� Q(S ,A)

◆

Theorem

Q-learning control converges to the optimal action-value function,

Q(s, a)! q⇤(s, a)

Q-learning algorithm

6.5. Q-learning: O↵-policy TD Control 131

usual four. How much better can you do with the extra actions? Can you do even better
by including a ninth action that causes no movement at all other than that caused by
the wind? ⇤
Exercise 6.10: Stochastic Wind (programming) Re-solve the windy gridworld task with
King’s moves, assuming that the e↵ect of the wind, if there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the time
you move exactly according to these values, as in the previous exercise, but also a third
of the time you move one cell above that, and another third of the time you move one
cell below that. For example, if you are one cell to the right of the goal and you move
left, then one-third of the time you move one cell above the goal, one-third of the time
you move two cells above the goal, and one-third of the time you move to the goal. ⇤

6.5 Q-learning: O↵-policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
o↵-policy TD control algorithm known as Q-learning (Watkins, 1989), defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a

Q(St+1, a)�Q(St, At)
i
. (6.8)

In this case, the learned action-value function, Q, directly approximates q⇤, the optimal
action-value function, independent of the policy being followed. This dramatically
simplifies the analysis of the algorithm and enabled early convergence proofs. The policy
still has an e↵ect in that it determines which state–action pairs are visited and updated.
However, all that is required for correct convergence is that all pairs continue to be
updated. As we observed in Chapter 5, this is a minimal requirement in the sense that
any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation conditions on
the sequence of step-size parameters, Q has been shown to converge with probability 1 to
q⇤. The Q-learning algorithm is shown below in procedural form.

Q-learning (o↵-policy TD control) for estimating ⇡ ⇡ ⇡⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S

+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0

until S is terminal

Autonomous Networking A.Y. 21-22 43

Example

CS885 Spring 2018 Pascal Poupart
20

Q-learning example

s1 73 100

66 81

s281.5 100

66 81

g = 0.9, a = 0.5, & = 0 for non-terminal states

' (), &+,ℎ. = ' (), &+,ℎ. + 0 & + 1max
56

' (7, 89 − ' (), &+,ℎ.
= 73 + 0.5 0 + 0.9max 66,81,100 − 73
= 73 + 0.5(17)
= 81.5

s2

University of WaterlooAutonomous Networking A.Y. 21-22 44
CS885 Spring 2018 Pascal Poupart

20

Q-learning example

s1 73 100

66 81

s281.5 100

66 81

g = 0.9, a = 0.5, & = 0 for non-terminal states

' (), &+,ℎ. = ' (), &+,ℎ. + 0 & + 1max
56

' (7, 89 − ' (), &+,ℎ.
= 73 + 0.5 0 + 0.9max 66,81,100 − 73
= 73 + 0.5(17)
= 81.5

s2

University of Waterloo CS885 Spring 2018 Pascal Poupart
20

Q-learning example

s1 73 100

66 81

s281.5 100

66 81

g = 0.9, a = 0.5, & = 0 for non-terminal states

' (), &+,ℎ. = ' (), &+,ℎ. + 0 & + 1max
56

' (7, 89 − ' (), &+,ℎ.
= 73 + 0.5 0 + 0.9max 66,81,100 − 73
= 73 + 0.5(17)
= 81.5

s2

University of Waterloo CS885 Spring 2018 Pascal Poupart
20

Q-learning example

s1 73 100

66 81

s281.5 100

66 81

g = 0.9, a = 0.5, & = 0 for non-terminal states

' (), &+,ℎ. = ' (), &+,ℎ. + 0 & + 1max
56

' (7, 89 − ' (), &+,ℎ.
= 73 + 0.5 0 + 0.9max 66,81,100 − 73
= 73 + 0.5(17)
= 81.5

s2

University of Waterloo

