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Today’s plan
Formalization of sequential decision making
¡ Markov Processes 
¡ Markov Reward Processes 
¡ Markov Decision Processes 

¡ The first step in applying reinforcement learning will always be 
to formulate the problem as an MDP
¡ Markov process
¡ We add rewards -> Markov Reward Processes 
¡ We add actions -> Markov Decision Processes 
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Why MDP?
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MDPs are a classical formalization of sequential decision 
making, where actions influence not just immediate 
rewards, but also subsequent situations (states) and 
through those future rewards

MDPs involve delayed rewards and the need to trade off 
immediate and delayed rewards

Whereas in bandit we estimated the q*(a) of each 
action a, in MDPs we estimate the value q*(a,s) of each 
action a in each state s, or we estimate the value v*(s) of 
each state s given optimal action selection



The agent-environment 
interface
¡ MDPs are meant to be a straightforward framing of the problem of 

learning from interaction to achieve a goal. 
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48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

¡ The agent and environment interact at each of a sequence of discrete 
time steps, t = 0, 1, 2, 3, . . . 

¡ At each timestep, the agent receives some representation of the 
environment state and on that basis selects an action 

¡ One time step later, in part as a consequence of its action, the agent 
receives a numerical reward and finds itself in a new state 



Introduction to MDP
¡ Markov decision processes formally describe an environment 

for reinforcement learning 

¡ Where the environment is fully observable

¡ i.e. The current state completely characterises the process

¡ Almost all RL problems can be formalised as MDPs, 
¡ e.g. Bandits are MDPs with one state 
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Markov property
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A state St is Markov if and only if ℙ[St+1|St] = ℙ [St+1|S1,...,St]Definition

¡ The state captures all relevant information from the history 

¡ Once the state is known, the history may be thrown away 

¡ i.e. The state is a sufficient statistic of the future 

“The future is independent of the past given the present” 



State Transition Matrix 
¡ For a Markov state s and successor state s’, the state 

transition probability is defined by 

¡ Pss′ = ℙ [ St+1=s′ | St=s ]

¡ State transition matrix P defines transition probabilities from 
all states s to all successor states s’

¡ where each row of the matrix sums to 1. 
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Lecture 2: Markov Decision Processes

Markov Processes

Markov Property

State Transition Matrix

For a Markov state s and successor state s 0, the state transition
probability is defined by

Pss0 = P
⇥
St+1 = s 0 | St = s

⇤

State transition matrix P defines transition probabilities from all
states s to all successor states s 0,

to

P = from

2

64
P11 . . . P1n
...

Pn1 . . . Pnn

3

75

where each row of the matrix sums to 1.



Markov process 

¡ A Markov process is a memoryless random process, i.e. a 
sequence of random states S1, S2, ... with the Markov property. 
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Definition

A Markov Process (or Markov Chain) is a tuple ⟨S,P⟩
• S is a (finite) set of states 
• P is a state transition probability matrix, Pss′ = ℙ [ St+1=s′ | St=s ]



Example: Student Markov 
Chain

Lecture 2: Markov Decision Processes

Markov Processes

Markov Chains

Example: Student Markov Chain
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Example: Student Markov 
Chain Episodes 

Sample episodes for Student 
Markov Chain starting from 
S1 = C1

S1, S2, ..., ST
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¡ C1 C2 C3 Pass Sleep 

¡ C1 FB FB C1 C2 Sleep

¡ C1 C2 C3 Pub C2 C3 Pass 
Sleep 

¡ C1 FB FB C1 C2 C3 Pub C1 FB 
FB FB C1 C2 C3 Pub C2 Sleep 

Lecture 2: Markov Decision Processes

Markov Processes

Markov Chains

Example: Student Markov Chain Episodes
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Sample episodes for Student Markov
Chain starting from S1 = C1

S1, S2, ..., ST

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub C1 FB FB
FB C1 C2 C3 Pub C2 SleepRandom 

sequences drawn 
from probabilities 



Example: Student Markov 
Chain Transition Matrix

Lecture 2: Markov Decision Processes

Markov Processes

Markov Chains

Example: Student Markov Chain Transition Matrix
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2

66666664

C1 C2 C3 Pass Pub FB Sleep

C1 0.5 0.5
C2 0.8 0.2
C3 0.6 0.4
Pass 1.0
Pub 0.2 0.4 0.4
FB 0.1 0.9
Sleep 1
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Outline 
Formalization of sequential decision making

1. Markov Processes 
¡ We have seen the basics on Markov processes but we have not 

talked about RL

2. Markov Reward Processes 
¡ Let us add rewards to our process
¡ How much reward do I accumulate across a particular sequence

3. Markov Decision Processes 
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Markov Reward Process 
¡ A Markov reward process is a Markov chain with values. 
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Definition

A Markov Reward Process is a tuple ⟨S, P, R, γ⟩
• S is a (finite) set of states 
• P is a state transition probability matrix, Pss′ = ℙ [ St+1=s′ | St=s ]
• R is a reward function, Rs = 𝔼 [ Rt+1 | St = s ] 
• γ is a discount factor, γ ∈ [0, 1] 



Example: Student MRP 
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Lecture 2: Markov Decision Processes

Markov Reward Processes

MRP

Example: Student MRP
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Goal: we want to 
maximize the 
rewards we obtain



Return

¡ The discount γ ∈ [0, 1] is the present value of future rewards 

¡ The value of receiving reward R after k + 1 time-steps is γkR

¡ This values immediate reward above delayed reward
¡ γ close to 0 leads to ”short-sighted” evaluation
¡ γ close to 1 leads to ”far-sighted” evaluation 
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Definition

The return Gt is the total discounted reward from time-step t. 

𝐺! = 𝑅!"# + 𝛾𝑅!"$ +⋯ = ,
%&'

(

𝛾%𝑅!"%"#



Why discount?

Most Markov reward and decision processes are discounted. Why? 
¡ Mathematically convenient to discount rewards 
¡ Avoids infinite returns in cyclic Markov processes 
¡ Uncertainty about the future may not be fully represented 
¡ If the reward is financial, immediate rewards may earn more interest 

than delayed rewards 
¡ Animal/human behaviour shows preference for immediate reward 
¡ It is sometimes possible to use undiscounted Markov reward processes 

(i.e. γ = 1), e.g. if all sequences terminate. 
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Value function
¡ The value function v(s) gives the long-term value of (being in) 

state s 
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Definition

The state value function v(s) of an MRP is the expected return starting 
from state s 

𝑉) = 𝔼 [𝐺𝑡 |𝑆𝑡 = 𝑠]



Example: Student MRP 
Returns 
¡ Sample returns for Student MRP: 

Starting from S1 = C1 with  γ = !
"

𝐺# = 𝑅$ + 𝛾𝑅* +⋯+ 𝛾+,$𝑅+
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Value Function

Example: Student MRP Returns

Sample returns for Student MRP:
Starting from S1 = C1 with � = 1

2

G1 = R2 + �R3 + ... + �T�2RT

C1 C2 C3 Pass Sleep v1 = �2 � 2 ⇤ 1

2
� 2 ⇤ 1

4
+ 10 ⇤ 1

8
= �2.25

C1 FB FB C1 C2 Sleep v1 = �2 � 1 ⇤ 1

2
� 1 ⇤ 1

4
� 2 ⇤ 1

8
� 2 ⇤ 1

16
= �3.125

C1 C2 C3 Pub C2 C3 Pass Sleep v1 = �2 � 2 ⇤ 1

2
� 2 ⇤ 1

4
+ 1 ⇤ 1

8
� 2 ⇤ 1

16
... = �3.41

C1 FB FB C1 C2 C3 Pub C1 ... v1 = �2 � 1 ⇤ 1

2
� 1 ⇤ 1

4
� 2 ⇤ 1

8
� 2 ⇤ 1

16
...

= �3.20
FB FB FB C1 C2 C3 Pub C2 Sleep



Example: State-Value 
Function for Student MRP (1)
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Value Function

Example: State-Value Function for Student MRP (1)

10-2 -2 -2

0-1

R = +10

0.5

0.5

0.2
0.8 0.6

0.4

0.9

0.1

R = +1

R = -1 R = 0

+1

R = -2 R = -2 R = -2

0.2
0.4

0.4

1.0

v(s) for γ =0



Example: State-Value 
Function for Student MRP (2) 
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Value Function

Example: State-Value Function for Student MRP (2)
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Averages over the 
probability of falling 
asleep and continue 

classes and also 
considers future rewards 



Example: State-Value 
Function for Student MRP (3)
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Value Function

Example: State-Value Function for Student MRP (3)
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Bellman Equation for 
MRPs
¡ The value function can be decomposed into two parts: 
¡ immediate reward Rt+1

¡ discounted value of successor state γv(St+1) 
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Bellman Equation

Bellman Equation for MRPs

The value function can be decomposed into two parts:

immediate reward Rt+1

discounted value of successor state �v(St+1)

v(s) = E [Gt | St = s]

= E
⇥
Rt+1 + �Rt+2 + �2Rt+3 + ... | St = s

⇤

= E [Rt+1 + � (Rt+2 + �Rt+3 + ...) | St = s]

= E [Rt+1 + �Gt+1 | St = s]

= E [Rt+1 + �v(St+1) | St = s]



Bellman Equation for MRPs (2) 
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Bellman Equation

Bellman Equation for MRPs (2)

v(s) = E [Rt+1 + �v(St+1) | St = s]

v(s) �!s

v(s0) �!s0

r

v(s) = Rs + �
X

s02S
Pss0v(s

0)

¡ Bellman equation averages over all the possibilities, weighting each 
by its probability of occurring

¡ The value of the start state must be equal the (discounted) value of 
the expected next state, plus the reward expected along the way

¡ Bellman equations expresses 
a relationship between the 
value of a state and the 
values of its successor states



Example: Bellman Equation 
for Student MRP 
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Bellman Equation

Example: Bellman Equation for Student MRP
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Bellman Equation in Matrix 
Form
¡ The Bellman equation can be expressed concisely using 

matrices, 

¡ where v is a column vector with one entry per state, R is 
the vector of immediate reward, P is transition probability 
matrix  
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Lecture 2: Markov Decision Processes

Markov Reward Processes

Bellman Equation

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v = R + �Pv

where v is a column vector with one entry per state

2

64
v(1)
...

v(n)

3

75 =

2

64
R1

...
Rn

3

75+ �

2

64
P11 . . . P1n
...

P11 . . . Pnn

3

75

2

64
v(1)
...

v(n)

3

75
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Bellman Equation

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v = R + �Pv

where v is a column vector with one entry per state

2

64
v(1)
...

v(n)

3

75 =

2

64
R1

...
Rn

3

75+ �

2

64
P11 . . . P1n
...

P11 . . . Pnn

3

75

2

64
v(1)
...

v(n)

3
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Bellman Equation

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v = R + �Pv

where v is a column vector with one entry per state

2

64
v(1)
...

v(n)

3

75 =

2

64
R1

...
Rn

3

75+ �

2

64
P11 . . . P1n
...

P11 . . . Pnn

3

75

2

64
v(1)
...

v(n)

3

75



Solving the Bellman Equation 
¡ The Bellman equation is a linear equation 

¡ It can be solved directly: 

¡ Computational complexity is O(n3) for n states

¡ Direct solution only possible for small MRPs

¡ There are many iterative methods for large MRPs, e.g. 
¡ Dynamic programming 
¡ Monte-Carlo evaluation 
¡ Temporal-Difference learning 
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Markov Reward Processes

Bellman Equation

Solving the Bellman Equation

The Bellman equation is a linear equation

It can be solved directly:

v = R + �Pv

(I � �P) v = R

v = (I � �P)�1
R

Computational complexity is O(n3) for n states

Direct solution only possible for small MRPs
There are many iterative methods for large MRPs, e.g.

Dynamic programming
Monte-Carlo evaluation
Temporal-Di↵erence learning



Outline 
Formalization of sequential decision making

1. Markov Processes
2. Markov Reward Processes 
3. Markov Decision Processes 
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Markov Decision Process 
¡ A Markov decision process (MDP) is a Markov reward process 

with decisions. It is an environment in which all states are 
Markov

Autonomous Networking A.Y. 21-22 28

Definition

A Markov Reward Process is a tuple ⟨S, A, P, R, γ⟩
• S is a (finite) set of states

• A is a finite set of actions

• P is a state transition probability matrix, 
𝑃ss′
-= ℙ [ St+1=s′ | St=s, At=a ]

• R is a reward function, 
𝑅s
- = 𝔼 [ Rt+1 | St = s, At=a ]

• γ is a discount factor, γ ∈ [0, 1] 

One matrix 
for each 
action



Example: Student MDP 
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Lecture 2: Markov Decision Processes

Markov Decision Processes

MDP

Example: Student MDP
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R = -1

R = 0

• Actions in red
• Now I choose the 

action, e.g. study or 
go to facebook

• The goal is to find
the best path to 
maximize rewards

• How do we make
decisions?



Policies (1) 

¡ A policy fully defines the behaviour of an agent

¡ MDP policies depend on the current state (not the history) 

¡ i.e. Policies are stationary (time-independent, do not depends 
on the time step, but only on the state)
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Definition

A policy is a distribution over actions given states

𝜋(a|s)= ℙ [ At=a | St=s ]



Value Function 
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Definition

The state-value function v𝜋(s) of an MDP is the expected return 
starting from state s, and then following policy 𝜋

v𝜋(s) = 𝔼𝜋 [ Gt | St=s ]

Definition

The action-value function q 𝜋 (s,a) is the expected return
starting from state s, taking action a, and then following policy 𝜋

q 𝜋(a|s)= 𝔼𝜋 [ Gt | St=s, At=a ]



Example: State-Value 
Function for Student MDP 
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Markov Decision Processes

Value Functions

Example: State-Value Function for Student MDP
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vπ(s) for π(a|s)=0.5, γ =1



Bellman Expectation 
Equation (with policy)
¡ The state-value function can again be decomposed into 

immediate reward plus discounted value of successor state, 

¡ The action-value function can similarly be decomposed, 
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

v⇡(s) = E⇡ [Rt+1 + �v⇡(St+1) | St = s]

The action-value function can similarly be decomposed,

q⇡(s, a) = E⇡ [Rt+1 + �q⇡(St+1,At+1) | St = s,At = a]
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

v⇡(s) = E⇡ [Rt+1 + �v⇡(St+1) | St = s]

The action-value function can similarly be decomposed,

q⇡(s, a) = E⇡ [Rt+1 + �q⇡(St+1,At+1) | St = s,At = a]



Bellman Expectation Equation 
for V𝜋
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for V ⇡

v�(s) �!s

q�(s, a) �!a

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)

State

action

The 
probability 
of taking 
one action 
or the other 
depends on 
the policy 

For each 
action I 
might take 
there is a q 
value



Bellman Expectation Equation 
for Q𝜋

Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for Q⇡

v�(s0) �!s0

q�(s, a) �!s, a

r

q⇡(s, a) = R
a
s + �

X

s02S
P

a
ss0v⇡(s

0)
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Bellman Expectation Equation 
for v𝜋 (2) 
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for v⇡ (2)

v�(s0) �!s0

v�(s) �!s

r

a

v⇡(s) =
X

a2A
⇡(a|s)

 
R

a
s + �

X

s02S
P

a
ss0v⇡(s

0)

!
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Bellman Expectation Equation 
for q 𝜋 (2) 
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Bellman Expectation Equation

Bellman Expectation Equation for q⇡ (2)

q�(s, a) �!s, a

q�(s0, a0) �!a0

r

s0

q⇡(s, a) = R
a
s + �

X

s02S
P

a
ss0

X

a02A
⇡(a0|s 0)q⇡(s

0, a0)
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Example: Bellman Expectation 
Equation in Student MDP 
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Bellman Expectation Equation

Example: Bellman Expectation Equation in Student MDP
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7.4 = 0.5 * (1 + 0.2* -1.3 + 0.4 * 2.7 + 0.4 * 7.4) 
+ 0.5 * 10

Policy is random: fifty-fifty
(equal probability for each choice)

Let us verify the value of red state


