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Today's plan

Formalization of sequential decision making
® Markov Processes
® Markov Reward Processes
® Markov Decision Processes

m The first step in applying reinforcement learning will always be
to formulate the problem as an MDP

= Markov process
m We add rewards -> Markov Reward Processes
m We add actions -> Markov Decision Processes
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MDPs are a classical formalization of sequential decision

making, where actions influence not just immediate

® rewards, but also subsequent situations (states) and
through those future rewards

MDPs involve delayed rewards and the need to tfrade off
c immediate and delayed rewards

Whereas in bandit we estimated the g*(a) of each

+ action a, in MDPs we estimate the value gq*(a,s) of each
action a in each state s, or we estimate the value v*(s) of
each state s given optimal action selection




The agent-environment

interface
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® MDPs are meant to be a straightforward framing of the problem of
learning from interaction to achieve a goal.
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® The agent and environment interact at each of a sequence of discrete

time steps, 1=0, 1, 2, 3, .

®m At each fimestep, the agent receives some representation of the
environment state and on that basis selects an action

m One time step later, in part as a consequence of its action, the agent
receives a numerical reward and finds itself in a new state
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Intfroduction to MDP

m Markov decision processes formally describe an environment
for reinforcement learning

® Where the environment is fully observable
m .e. The current state completely characterises the process

m Almost all RL problems can be formalised as MDPs,
® e.g. Bandits are MDPs with one state
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Markov property

“The future is iIndependent of the past given the present”

m The state captures all relevant information from the history

B Once the state is known, the history may be thrown away

m |.e. The state is a sufficient statistic of the future
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State Transition Matrix

m For a Markov state s and successor state s’, the stafe
fransition probability is defined by

- Pss' =P [ST+1=S, | S’r:S]

m State transition matrix P defines transition probabilities from
all states s to all successor states s’

to

P = from

m where each row of the matrix sums to 1.
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m A Markov process is a memoryless random process, i.e. a
sequence of random states S1, S2, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)
« Sis a (finite) set of states

« Pis a state transition probability matrix, P = P [ St41=5" | S$t=5 ]




Example: Student Markov 55 SAPTENZA
Chain .

UNIVERSITA DI ROMA




Example: Student Markov 20 SAPIENZA
Chain Episodes '

UNIVERSITA DI ROMA

Sample episodes for Student

Markov Chain starting from
S, =C,

S1. S0, s §1

C1 C2 C3 Pass Sleep

Cl1FBFB C1 C2Sleep

C1 C2C3 Pub C2 C3 Pass
Sleep

CIFBFBC1 C2C3Pub CI1FB
FB FB C1 C2 C3 Pub C2Sleep

Random
sequences drawn
from probabilities
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Example: Student Markov 20 SAPIENZA
Chain Transition Matrix S

0.9

@ Sleep |q—
0.1 C1 c2 C3 Pass Pub FB Sleep

C1 i 0.5 0.5
C2 0.8 0.2

0.5 0.2 1.0 c3 0.6 0.4

0.5 0.8 0.6 P = Pass 1.0
Pub 0.2 0.4 0.4
0.4

FB 0.1 0.9
Sleep | 1
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Outline

Formalization of sequential decision making
1. Markov Processes

m We have seen the basics on Markov processes but we have not
talked about RL

2. Markov Reward Processes
m | et us add rewards to our process

® How much reward do | accumulate across a particular sequence

3. Markov Decision Processes
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m A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S, P, R, y)

« Sis a (finite) set of states

« Pis astate transition probability matrix, P = P [ Si+1=5" | St=5 ]
« Risareward function, Ra=E [ Ri+; | St =5]

* v is adiscount factor, y € [0, 1]
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0.9

0.1 R=-1

Goal: we want to
maximize the
R=+I rewards we obtain
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Return

The return G; is the total discounted reward from time-step 1.

G = Rey1 T VReyp + 00 = Z Y*Reyks1
k=0

m The discount y € [0, 1] is the present value of future rewards
m The value of receiving reward R after k + 1 time-steps is YR

m This values immediate reward above delayed reward
m v close to 0 leads to "short-sighted” evaluation
m v close to 1 leads to "far-sighted” evaluation
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Most Markov reward and decision processes are discounted. Why?¢
m Mathematically convenient to discount rewards
m Avoids infinite refurns in cyclic Markov processes
m Uncertainty about the future may not be fully represented

m |f the reward is financial, immediate rewards may earn more interest
than delayed rewards

B Animal/human behaviour shows preference for immediate reward

m |t is sometimes possible 1o use undiscounted Markov reward processes
(,e.y =1), e.q. if all sequences terminafte.
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Value function

® The value function v(s) gives the long-term value of (being in)
state s

The state value function v(s) of an MRP is the expected return starting
from state s

V, = E[Gt |St = s]
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m Sample returns for Student MRP:

Starting from S; = C1 with y = %

Gl — RZ + )/Rg + -+ )/T_ZRT

C1 C2 C3 Pass Sleep Vo= —2—2 @ 2 *.+ 10 * = 2.5
C1 FB FB C1 C2 Sleep —2-1 —1x 2% 1= —3.125

_ 1 _

1= *2 4 8 * 16 -
C1 C2 C3 Pub C2 C3 Pass Sleep Vl:_2_2*%_2*411+1*%_2*%° = —3.41
Cl1FBFB C1 C2C3PubCl... v1:—2—1*%—1*%—2*%—2*1—16... B 3.20

FB FB FB C1 C2 C3 Pub C2 Sleep




Example: State-Value 20\ SAPTENZA
Func-l-ion for S.I.Uden_l_ MRP (-l) o< UNIVERSITA DI ROMA

v(s) for y =0




Example: State-Value 20) SAPIENZA
Function for Student MRP (2) M=
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v(s) fory =0.9

Averages over the
probability of falling
asleep and contfinue
classes and also
considers future rewards

\_
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v(s) fory =1
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Bellman Equation for 20\ SAPIENZA

MRPs

m The value function can be decomposed into two parts:
B immediate reward Ry
m discounted value of successor state yv(Si+)

v(s) =E[G; | 5; = 5]

=K

[Rt—l—l + YRty2 + ’Y2Rt+3 + ... | S = 5]
Rey1+ 7 (Reg2 +YRexz +...) | St = 5]
Rey1+ 7Geg1 | St = 5]

Rev1 +yv(Se41) | S =]
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Bellman Equation for MRPs (2)

v(s) = E[Res1+9v(Se41) | St = 9]

m Bellman equations expresses
r a relationship between the

, value of a state and the

values of its successor states

v(s) =Rs+7 Y Pesv(s)

s’'eS

m Bellman equation averages over all the possibilities, weighting each
by its probability of occurring

®m The value of the start state must be equal the (discounted) value of
the expected next state, plus the reward expected along the way
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® The Bellman equation can be expressed concisely using
maltrices,

v=R-+~yPv

m where v is a column vector with one entry per state, R is
the vector of immediate reward, P is transition probability

martrix
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Solving the Bellman Equation

®m The Bellman equation is a linear equation

m |t can be solved directly:

v=R-+~yPv
(Il —yP)v=TR
v=(—-~vP) 'R

» Computational complexity is O(n3) for n states

m Direct solution only possible for small MRPs

®m There are many iterative methods for large MRPs, e.g.
= Dynamic programming
® Monte-Carlo evaluation
m Temporal-Difference learning
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Outline

1.
2.
3. Markov Decision Processes




Markov Declision Process
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m A Markov decision process (MDP) is a Markov reward process
with decisions. It is an environment in which all states are
Markov

A Markov Reward Process is a tuple (S, A, P, R, y)

Sis a (finite) set of states

A is a finite set of actions

. . o . One matrix
P is a state transition probability maftrix, ( for each

PS‘S‘,= P [ Si=s" | Si=s, Ai=a ] \\ action

R is a reward function,
R =E [Ry | St=5 Ar=a ]

y is a discount factor, y € [0, 1]




Example: Student MDP

Facebook
R=-1

Facebook
R=-1
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Actions in red

Now | choose the
action, e.g. study or
go to facebook
The goal is to find
the best path to
maximize rewards
How do we make
decisions?¢
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Policies (1)
A policy is a distribution over actions given states

m(al|s)=P [ A=a | Si=s]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m |.e. Policies are stationary (time-independent, do not depends
on the time step, but only on the state)
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Value Function

Definition

The state-value function v,(s) of an MDP is the expected return
starfing from state s, and then following policy n

Vo(s) = E, [ Gy | Si=s]

Definition

The action-value function g, (s,a) is the expected refurn
starting from state s, taking action a, and then following policy n

A-(a|s)=E; [ Gy | Si=s, A=a]
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Function for Student MDP REatlsiiss

Facebook vr(s) for m(a|s)=0.5, y =1
R=-1

Facebook
R=-1
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m The state-value function can again be decomposed into
Immediate reward plus discounted value of successor state,

Vr(s) = Ex [Rep1 + yva(Se41) | St = 3]

m The action-value function can similarly be decomposed,

dx(s,a) = Ex [Re1 +vqr(St41, Acy1) | St = 5, Ar = 3
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The
probability
State of taking
Vi (S) <4 8 one action
or the other
o deperson
might take =PIy
there isa g
value
977(37 a) < Qq action

ve(s) = 3 w(als)ge(s. 2

acA
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Bellman Expectation Equation  [S=iESTNgIaNZ
for Q~ =




. ~ (2
Bellman Expectation Equation  [RrARSARIENA
forv_(2)
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forq .. (2)
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gr(s,3) =RZ+~ Y P Y 7(d]s)an(s', )

s’'eS aeA
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Equation in Student MDP

Let us verify the value of red state
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Facebook 74=05*1+02%-1.3+04*2.7+04%*74)
R=-1 + 0.5 *10

Policy is random: fifty-fifty
(equal probability for each choice)

Facebook
R=-1




