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m Rewards evaluate actions taken (evaluative feedback)
m Evaluative feedback depends on the action taken

m There is need for active exploration (explicit search for
good behavior)

m Should the agent explore or exploit?

m et us consider a simplified version of RL problems
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K-armed bandit problem

® Problem: you are faced repeatedly with a choice among K
different options, or actions

m Affer each choice you receive a numerical reward chosen from
a stationary probability distribution that depends on the action
you selected

m Objective: maximize the expected total reward over some time
period (ex. 1000 action selections, or fime-steps)
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K-armed bandit problem

i s . Analogy with slot
B |} ’ : machine “one-
Rt armed bandit”
except that it has k
levers instead of
A one

|

.
-

[ . Sl 0
m Fach action selection is like a play of one of the slot machine’s
levers, and the rewards are the payoffs for hitting the jackpot

® Through repeated action selections you are to maximize your
winning by concentrating your actions on the best levers -
5
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K-armed bandit

® Formalization

m Set of action A (or “arms”)

m Reward function R that follows an unknown probability distributions
m There is only one state

m At each step f, the agent selects an action in A

® The environment generates a reward

® The goal is to maximize the cumulative reward
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Doctor tfreatments

Agent
K=3
Rewards could be the patient's welfare : Reward
afterreceiving rreatmént Bandits -
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Action-value function

m For the doctor to decide which action is best, we must define the
value of taking each action.

m We call these values the action values or the action value
function

m Action value: the value of selecting an action a is defined as the
expected reward we receive by taking that action

gx(a) = E|R; | Ay =aq]

m The goal of the agent is to maximise the expected reward
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How can we estimate s4) SAPIENZA
action-value?

®m Sample-average method
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Doctor tfreatments
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Let’s use the change in blood pressure : Rewards
afrerreceiving the treaiment. Actions
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Bernoulli

— = | T — g(a)=.5x-11+.5%9
-11 g«(1) 9

— - B NEm g«(a) = Binomiall

— _|_ —> ¢i«(a) =3 Uniform

q+(3)

Q- is The mean of the distributions for each action
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Sample-average estimate

m The reward distribution is not known — the doctor will run many
trial to learn about each treatment

m The estimated value for action a is the sum of rewards observed
when taking action a divided by the total number of times
action a has been taken

sum of rewards when a taken prior to ¢ Z:;% Ri - 14,—¢

Qi(a) =

number of times a taken prior to ¢ Zf:i la,—q ’

® Where 1 gicate denotes the random variable that is 1 if
predicate is true and O if it is Nof.

m |[f the denominator is zero, then we define Q;(a)=0
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Example

A reward of 1 if
treatment succeeds,

0 otherwise )
[ )
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Example

A reward of 1 if
treatment succeeds,
0 otherwise

-1
Z,‘=| Ri

t—1

Q/fa) =

Actions are
selected
randomly

)

Q;(R)=0.33

v

Q;(Y)=0.66
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How 1o select an action

m Rondom (previous example)
m Greedy
m c-greedy
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Greedy action

® |n reality, our doctors would not randomly assign treatments 1o
their patients.

m |[nstead, they would probably assign the treatment that they
currently think is the best (trying to get the most reward he can
rght now.)

m We call this method of choosing actions greedy.

® The greedy action is the action that currently has the largest
estimated value.
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Greedy action

m Selecting the greedy action means the agent is exploiting its
current knowledge.

m We can compute the greedy action by taking the argmax of our
estimated values

Ay = argmax Q¢ (a)
a
m Greedy action selection always exploits current knowledge to
maximize immediate reward

m |f spends no fime at all sampling apparently inferior actions to see
if they might be better

m Geft stuck on suboptimal actions (no exploration)
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e-greedy

B How do we choose when to exploit and when to exploree

m Behave greedly most of fime, but every once in a while (with
small probability ¢), instead select randomly from among all
actions with equal probability, independently of the action
value estimates

argmax Q(a) with probability 1 — ¢
A « {

a ~ Uniform({q,...a,}) with probability ¢

®m As the number of step increases Q;(a) converges to g-(Q)
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Exercise |

In e-greedy action selection, for the case of two actions and
e= 0.5, what is the probability that the greedy action is
selectede
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Exercise 2

Consider a k-armed bandit problem with k = 4 actions, denoted 1, 2, 3, and 4.

Consider applying to this problem a bandit algorithm using e-greedy action
selection, sample-average action-value estimates, and initial estimates of Q;(a) =

O, for all a.

Suppose the initial sequence of actions and rewards is

Al =1 RI1=1
A2=2 R2=I]
A3 =2 R3=2
Ad4=2 R4=2
A5=3 R5=0

On some of these time steps the € case may have occurred, causing an action to
be selected at random. On which time steps did this definitely occure On which
time steps could this possibly have occurrede
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m |[ncremental
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® When we perform many trials we have many values to
calculate average action-value

B Can we compute it incrementally?
m To simplify notation we concentrate on a single action.

m Let R, now denote the reward received after the i selection of
this action, and let Q, denote the estimate of its action value
after it has been selected n-1 times

;R1+R2+---+Rn_1
- n—1

n
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m Given Q, and the n'h reward, R,,, the new average of all n
rewards can be computed by

1 n
Qn+1 = - ;Ri

which holds even for n=1,
obtaining Q,=R;
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Qni1 = Qnt ! {Rn — Qn}

n

m The general form for the incremental update rule is

NewEstimate <— OldEstimate + StepSize {Target — OIdEstimate}

» [Target — OldEstimate] is an error in the estimate

m StepSize changes from time step to time step
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Pseudocode for bandit

® The function bandit(a) is assumed to take an action and refurn @
corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) <0
N(a) <0

Loop forever:
4. | argmax, Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability e
R <+ bandit(A)
N(A)«— N(A)+1
Q(4) + Q(A) + w7 [R — Q(A4)]
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How fo estimate action- s4) SAPIENZA
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= Nonstationary problems
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Nonstationary problem

® The averaging methods discussed so far are appropriate for
stationary bandit problems, that is, for bandit problems in which
the reward probabilities do not change over time

m There are often nonstationary problems, in which reward
probabilities change over time
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Example

m Doctor trials

® What if one of the freatments was more effective under certain
conditions¢ Specifically, let's say the freatment B is more
effective during the winter months.

st
@ @

0.25 0.75

m The distribution of rewards changes with time

m The doctor is unaware of this change but would like to adapt to it
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m One opftion is to use a fixed step size.

m |f step-size parameter is constant then the most recent
rewards affect the estimate more than older rewards.

Qui1 = Qu +a|Ru = Qu|

" Where a € (0,1]
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Quit = Qut0a|Ru—Qu|




SAPTIENZA

UNIVERSITA DI ROMA

How 1o select an action

m Optimistic initial values
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Optimistic initial values
m All methods seen so far are dependent to some extent on
the initial action-value estimates, Q,(q)

® |nitial action values can be used as a simple way to
encourage exploration

m What if our doctor performing medical trials was inifially very
optimistic about the outcome of each treatmente

m Perhaps the doctor starts with the assumption that each
treatment is 100% effective, until shown otherwise.
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Example

m Our doctor would begin prescribing treatments at random, until
one of the treatments fails to cure a patient

® The doctor might then choose from the other two treatments at
random

" Again, the doctor would confinue until one of these tfreatments
fails o work

o,
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Example

® Previously the initial
estimated values were
assumed to be 0, which is Q] (
not necessarily optimistic

optimistically assumes that

each treatment is highly Qi
effective before running

the trial.

®

)
= Now, our doctor g

®

m |ef's make the inifial value
for each action 2
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® A reward of 1 if
treatment

Q Q Q
succeeds, 0 °
otherwise 1.5 2 )
[ )
w 0 1.0
: [ ]

Qn+1 — Qn + [Rn - Qn} w 1 1.5
Let a=0.5 1 1.25
Qi{a)=2 0 |075

0 0.65
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Optimistic initial values

m All actions are tried several times before the value
estimates converge

m The system does a fair amount of exploration even if
greedy actions are selected all the fime
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Conclusions

® Methods to evaluate action values
m Sample average
® |[ncrementally
m Stationary problems
m Nonstationary problems

m Strategies for action selection
® Random
m Greedy
" c-greedy
B Optimistic initial values
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