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Recall: Linear Classifier

f(x,W) = Wx + b
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Softmax Classifier (Multinomial Logistic Regression)

cat

car

frog

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax  
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized

Probabilities  
must be >= 0

Probabilities  
must sum to 1

probabilitiesUnnormalized

Li = -log(0.13)
= 2.04

log-probabilities / logits probabilities

Maximum Likelihood Estimation  
Choose weights to maximize the  
likelihood of the observed data
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Softmax Classifier (Multinomial Logistic Regression)

cat

car

frog

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax  
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized  
probabilities

Probabilities  
must be >= 0

Probabilities  
must sum to 1

probabilitiesUnnormalized
log-probabilities / logits

1.00
0.00
0.00
Correct  
probs

compare

Cross Entropy
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Let's double check...

• Entropy & KL-divergence:

• Cross Entropy the sum of both:
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Let's double check...

• Cross Entropy in our classification case:
Target "distribution" / output:

Output of the network:

• Then Cross Entropy Loss for image  𝑥!



Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023

16

Regularization: Expressing Preferences

L2 Regularization

L2 regularization likes to  
“spread out” the weights
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Regularization: Prefer Simpler Models

x

y
f1 f2
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data loss + regularization

How to find the best W?

Where we are...
Linear score function

Softmax loss
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Finding the best W: Optimize with Gradient Descent

Landscape image is CC0 1.0 public domain  
Walking man image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&amp;picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Outline

• Backpropagation and Gradient Descent
illustrated using computational graphs
chain rule - upstream and local gradients
modularization example

• Neural Networks and Deep Learning
intuition why deep learning can help
integrated learning of features and classifier



Backpropagation and Gradient Descent
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If we can compute then we can learn W1 andW2

Problem: How to compute gradients?
Nonlinear score function

Softmax loss on predictions

Regularization

Total loss: data loss + regularization
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(Bad) Idea: Derive on paper

Problem: Very tedious: Lots of  matrix calculus, need lots of paper

Problem: What if we want to  change loss? E.g. use L2 instead of 
softmax? Need to re-derive from scratch

Problem: Not feasible for very  complex models!
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x

W

softmax
loss

R

+ L
s (scores)

Better Idea: Computational graphs + Backpropagation

*
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Backpropagation: a simple example
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Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

Chain rule:

Want:
Upstream  
gradient

Local  
gradient
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Chain rule:

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

Want:
Upstream  
gradient

Local  
gradient
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

Chain rule:

Want:
Upstream  
gradient

Local  
gradient
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Chain rule:

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

Want:
Upstream  
gradient

Local  
gradient
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f
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f

“local gradient”
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f

“local gradient”

“Upstream  
gradient”
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f

“local gradient”

“Upstream  
gradient”

“Downstream  
gradients”
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f

“local gradient”

“Upstream  
gradient”

“Downstream  
gradients”
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f

“local gradient”

“Upstream  
gradient”

“Downstream  
gradients”
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Another example:
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Another example:
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Another example:



Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023

60

Another example:
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Another example:

Upstream  
gradient

Local  
gradient
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Another example:
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Another example:

Upstream  
gradient

Local  
gradient
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Another example:
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Another example:

Upstream  
gradient

Local  
gradient
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Another example:
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Another example:

Upstream  
gradient

Local  
gradient
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Another example:
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Another example:

[upstream gradient] x [local gradient]  
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2 (both inputs!)
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Another example:
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Another example:

[upstream gradient] x [local gradient]  
x0: [0.2] x [2] = 0.4
w0: [0.2] x [-1] = -0.2
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Another example:

Sigmoid

Sigmoid  
function

Computational graph  
representation may not  
be unique. Choose one  
where local gradients at  
each node can be easily  
expressed!
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Another example:

Sigmoid

Sigmoid  
function

Sigmoid local  
gradient:

Computational graph  
representation may not  
be unique. Choose one  
where local gradients at  
each node can be easily  
expressed!
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Another example:

Sigmoid

Sigmoid  
function

Sigmoid local  
gradient:

Computational graph  
representation may not  
be unique. Choose one  
where local gradients at  
each node can be easily  
expressed!

[upstream gradient] x [local gradient]  
[1.00] x [(1 - 0.73) (0.73)] = 0.2
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Patterns in gradient flow
add gate: gradient distributor  

3

2

2

4
2

7+
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Patterns in gradient flow
add gate: gradient distributor  

3

2

2

4

mul gate: “swap multiplier”  
2

5

5*3=15

3
2*5=102

7 x 6+
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Patterns in gradient flow
add gate: gradient distributor  

3

2

2

4

mul gate: “swap multiplier”  
2

5

5*3=15

3
2*5=102

copy gate: gradient adder
7

7
4+2=6

4
7
2

7 x 6+
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Patterns in gradient flow
add gate: gradient distributor  

3

2

2

4

max

mul gate: “swap multiplier”  
2

5

5*3=15

3
2*5=10

max gate: gradient router  
4
0

5
9

2

copy gate: gradient adder
7

7
4+2=6

4
7
2

7 x 6

5

9

+
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Backprop Implementation:  
“Flat” code Forward pass:  

Compute output

Backward pass:  
Compute grads
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Backprop Implementation:  
“Flat” code Forward pass:  

Compute output

Base case
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Backprop Implementation:  
“Flat” code Forward pass:  

Compute output

Sigmoid
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Backprop Implementation:  
“Flat” code Forward pass:  

Compute output

Add gate
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Backprop Implementation:  
“Flat” code Forward pass:  

Compute output

Add gate
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Backprop Implementation:  
“Flat” code Forward pass:  

Compute output

Multiply gate
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Backprop Implementation:  
“Flat” code Forward pass:  

Compute output

Multiply gate
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Backprop Implementation: ModularizedAPI
Graph (or Net) object (rough pseudo code)
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x

y

(x,y,z are scalars)

z
*

Modularized implementation: forward / backward API

Need to cache
some values for  
use in backward

Gate / Node / Function object: Actual PyTorch code

Upstream  
gradient

Multiply upstream  
and local gradients
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So far: backprop with scalars

What about vector-valued functions?
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a  
small amount, how  
much will y change?
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Recap: Vector derivatives

Regular derivative:

If x changes by a  
small amount, how  
much will y change?

Scalar to Scalar Vector to Scalar

Derivative is Gradient:

For each element of x,
if it changes by a small
amount then how much
will y change?
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Recap: Vector derivatives

Regular derivative:

If x changes by a  
small amount, how  
much will y change?

Scalar to Scalar Vector to Scalar

Derivative is Gradient:

For each element of x,
if it changes by a small
amount then how much
will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it  
changes by a small amount  
then how much will each  
element of y change?
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f

“local  
gradients”

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

“Downstream
gradients”
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f

“local  
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

“Upstream gradient”  
For each element of z, how  
much does it influence L?

“Downstream
gradients”

Backprop with Vectors
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Dx

Dy

Dz

Dz

Loss L still a scalar!“local  
gradients”

[Dx  x Dz]

f
[Dy  x Dz]

Jacobian  
matrices “Upstream gradient”  

For each element of z, how  
much does it influence L?

“Downstream
gradients”

Backprop with Vectors
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“Downstream
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

y z[D x D ]

“local  
gradients”

[Dx x Dz]

f
Jacobian  
matrices “Upstream gradient”  

For each element of z, how  
much does it influence L?

Dy

Dx

Matrix-vector  
multiply

Backprop with Vectors
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f(x) = max(0,x)
(elementwise)

4D input x:
[ 1 ]
[ -2 ]
[ 3 ]
[ -1 ]

Backprop with Vectors
4D output y:

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[ 1 ]
[ -2 ]
[ 3 ]
[ -1 ]

Backprop with Vectors
4D output y:

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

4D dL/dy:
[ 4 ]
[ -1 ]
[ 5 ]
[ 9 ]

Upstream  
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[ 1 ]
[ -2 ]
[ 3 ]
[ -1 ]

Backprop with Vectors
4D output y:

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

4D dL/dy:
[ 4 ]
[ -1 ]
[ 5 ]
[ 9 ]

Jacobian dy/dx  
[ 1 0 0 0 ]
[ 0 0 0 0 ]
[ 0 0 1 0 ]
[ 0 0 0 0 ]

Upstream  
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[ 1 ]
[ -2 ]
[ 3 ]
[ -1 ]

Backprop with Vectors
4D output y:

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

4D dL/dy:
[ 4 ]
[ -1 ]
[ 5 ]
[ 9 ]

[dy/dx] [dL/dy]  
[ 1 0 0 0 ] [ 4 ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5 ]
[ 0 0 0 0 ] [ 9 ]

Upstream  
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[ 1 ]
[ -2 ]
[ 3 ]
[ -1 ]

Backprop with Vectors
4D output y:

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

4D dL/dy:
[ 4 ]
[ -1 ]
[ 5 ]
[ 9 ]

[dy/dx] [dL/dy]  
[ 1 0 0 0 ] [ 4 ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5 ]
[ 0 0 0 0 ] [ 9 ]

Upstream  
gradient

4D dL/dx:  
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[ 1 ]
[ -2 ]
[ 3 ]
[ -1 ]

Backprop with Vectors
4D output y:

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

4D dL/dy:
[ 4 ]
[ -1 ]
[ 5 ]
[ 9 ]

[dy/dx] [dL/dy]  
[ 1 0 0 0 ] [ 4 ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5 ]
[ 0 0 0 0 ] [ 9 ]

Upstream  
gradient

Jacobian is sparse:  
off-diagonal entries  
always zero! Never  
explicitly form  
Jacobian -- instead  
use implicit  
multiplication

4D dL/dx:  
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[ 1 ]
[ -2 ]
[ 3 ]
[ -1 ]

Backprop with Vectors
4D output y:

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

4D dL/dy:
[ 4 ]
[ -1 ]
[ 5 ]
[ 9 ]

[dy/dx] [dL/dy]4D dL/dx:  
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Upstream  
gradient

Jacobian is sparse:  
off-diagonal entries  
always zero! Never  
explicitly form  
Jacobian -- instead  
use implicit  
multiplication



Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023

109

“local  
gradients”

“Downstream
gradients”

Backprop with Matrices (or Tensors) Loss L still a scalar!

Jacobian  
matrices

For each element of y, how much  
does it influence each element of z?

Matrix-vector  
multiply

[Dz×Mz]

“Upstream gradient”  
For each element of z, how  
much does it influence L?

[Dx×Mx]

[Dx×Mx]

[Dy×My]

[Dy×My]

dL/dx always has the  
same shape as x!

[Dz×Mz]
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“Downstream
gradients”

Backprop with Matrices (or Tensors) Loss L still a scalar!

“local  
gradients”

[(Dx×Mx)×(Dz×Mz)]

Jacobian  
matrices “Upstream gradient”  

For each element of z, how  
much does it influence L?

For each element of y, how much  
does it influence each element of z?

Matrix-vector  
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dy×My)×(Dz×Mz)]

[Dx×Mx]

[Dx×Mx]

[Dy×My]

dL/dx always has the  
same shape as x!
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]

Jacobians:
dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have  N=64, D=M=4096
Each Jacobian takes 256 GB of memory!

Must work with them implicitly!
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]Q: What parts of y  

are affected by one  
element of x?
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]Q: What parts of y  

are affected by one  
element of x?
A: affects the  
whole row
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]Q: What parts of y  

are affected by one  
element of x?
A: affects the  
whole row
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]Q: What parts of y  

are affected by one  
element of x?
A: affects the  
whole row

Q: How much
does
affect ?
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]Q: What parts of y  

are affected by one  
element of x?
A: affects the
whole row

Q: How much
does
affect ?
A:
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]
w: [D×M]

[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]Q: What parts of y  

are affected by one  
element of x?
A: affects the
whole row

Q: How much
does
affect ?
A:

[N×D] [N×M] [M×D]
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Backprop with Matrices
x: [N×D]

[ 2 1 -3 ]
[ -3 4 2 ]

Matrix Multiply

y: [N×M]
[13 9 -2 -6 ]
[ 5 2 17 1 ]

dL/dy: [N×M]  
[ 2 3 -3 9 ]
[ -8 1 4 6 ]

[N×D] [N×M] [M×D] [D×M] [D×N] [N×M]

By similar logic:

These formulas are  
easy to remember: they  
are the only way to  
make shapes match up!

w: [D×M]
[ 3 2 1 -1]
[ 2 1 3 2]
[ 3 2 1 -2]
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● backpropagation = recursive application of the chain rule along a  
computational graph to compute the gradients of all  
inputs/parameters/intermediates

● implementations maintain a graph structure, where the nodes implement  
the forward() / backward() API

● forward: compute result of an operation and save any intermediates  
needed for gradient computation in memory

● backward: apply the chain rule to compute the gradient of the loss  
function with respect to the inputs

Summary
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Outline

• Backpropagation and Gradient Descent
illustrated using computational graphs
chain rule - upstream and local gradients
modularization example

• Neural Networks and Deep Learning
intuition why deep learning can help
integrated learning of features and classifier



Neural Networks and Deep Learning
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Neural networks: 1 layer, the linear classifier 

(Before) Linear score function:
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(Before) Linear score function:  

(Now) 2-layer Neural Network:

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)
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Neural networks: 2 layers

“Neural Network” is a very broad term; these are more accurately called  
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)

(Before) Linear score function:  

(Now) 2-layer Neural Network:
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Neural networks: deeper networks

(In practice we will usually add a learnable bias at each layer as well)

(Before) Linear score function:  

(Now) 2-layer Neural Network:

or 3-layer Neural Network:
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Neural networks: 2 layers
(Before) Linear score function:  

(Now) 2-layer Neural Network:

x hW1 sW2

3072 100 10
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Neural networks: learning 100s of templates
(Before) Linear score function:

(Now) 2-layer Neural Network:

x hW1 sW2

3072 100 10

Learn 100 templates instead of 10. Share templates among classes
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(Before) Linear score function:

(Now) 2-layer Neural Network:

The function is called the activation function.  
Q: What if we try to build a neural network without one?

Neural networks: why is max operator important?



Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023

167

Neural networks: why is max operator important?
(Before) Linear score function:

(Now) 2-layer Neural Network:

The function is called the activation function.  
Q: What if we try to build a neural network without one?

A: We end up with a linear classifier again!
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Universal approximation theorem
Let h(x) be a continuous function defined on a compact 
subset S ⊂ R^d and ε > 0. For a sufficiently large p, there 
exists an f (x) with p hidden units such that:

|h(x) − f (x)| < ε, ∀x ∈ S 

This holds for any non-constant, bounded, continuous φ.

Cybenko 1989
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NNs training
MLPs are highly non-convex. Therefore, its optimization 
landscape has multiple local minima.

Training a neural network optimally is NP-hard!

It is highly dependent on a good initialization.

Finding the global optimum requires running GD from almost 
everywhere (almost impossible in practice)
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions
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Sigmoid

tanh

ReLU

Maxout

ELU

Activation functions ReLU is a good default  
choice for most problems

Leaky ReLU
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“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

Neural networks: Architectures



Setting the number of layers and their sizes

more neurons = more capacity



Do not use size of neural network as a regularizer. Use stronger regularization instead:

https://playground.tensorflow.org/
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Deep Learning Ingredients

• Deep Learning is based on
Availability of large datasets
Massive parallel compute power
Advances in machine learning over the years

• Strong improvements due to
Internet (availability of large-scale data)
GPUs (availability of parallel compute power)
Deep / hierarchical models with end-to-end learning
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Feature Extraction

Image features vs ConvNets

f
10 numbers giving  
scores for classes

training

training

Lecture 3 - 11

10 numbers giving  
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification  
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.  
Reproduced with permission.
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Traditional Approach

• Feature extraction
often hand crafted and fixed
might be too general (not task-specific enough)
might be too specific (does not generalize to other tasks)

• How to achieve best classification performance
more complex classifier (e.g. multi-feature, non-linear)?
how specialized for the task?

feature extraction  
(hand crafted) Classification Car

yx
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Hand-Crafted Features.. before DNNs
(slide of Rob Fergus)

• Features are key to recent progress in recognition
• Multitude of hand-designed features currently in use

SIFT, HOG, LBP, MSER, Color-SIFT etc.

• Where next? Better classifiers? Or keep building more  features?

Felzenszwalb, Girshick,  
McAllester and Ramanan, PAMI 2007

Yan & Huang
(Winner of PASCAL 2010 classification competition)
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Deep Learning: Trainable features

• Parameterized feature extraction
• Features should be

efficient to compute
efficient to train (differentiable)

Features
features = g(x,λ)

Classifier
y = f(features,ω) Car

yx
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Deep Learning: Joint Training of all Parameters

• Parameterized feature extraction
• Features should be

efficient to compute
efficient to train (differentiable)

• Joint training of feature extraction and classification
• Feature extraction and classification merge into one pipeline

Features
features = g(x,λ)

Classifier
y = f(features,ω) Car

yx

“End-to-End” system
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Deep Learning: Joint Training of all Parameters

• All parts are adaptive
• No differentiation between feature extraction and classification
• Nonlinear transformation from input to desired output

Features
features = g(x,λ)

Classifier
y = f(features,ω) Car

yx

“End-to-End” system
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Deep Learning: Joint Training of all Parameters

• How can we build such systems?
• What is the parameterization (hypothesis)?
• Composition of simple building blocks can lead to complex systems (e.g. neurons - brain)

Features
features = g(x,λ)

Classifier
y = f(features,ω) Car

yx

“End-to-End” system



Fabio Galasso
Fundamentals of Data Science | Winter Semester 2023

200

Deep Learning: Joint Training of all Parameters

• How can we build such systems?
• What is the parameterization (hypothesis)?
• Composition of simple building blocks can lead to complex systems (e.g. neurons - brain)
• Each block has trainable parameters 𝜆!

Car

yx

λ1 λ3 λ4λ2
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Deep Learning: Joint Training of all Parameters

• How can we build such systems?
• What is the parameterization (hypothesis)?
• Composition of simple building blocks can lead to complex systems (e.g. neurons - brain)
• Each block has trainable parameters 𝜆!

Car

yx

intermediate representations

λ1 λ3 λ4λ2
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Deep Learning: Joint Training of all Parameters

• Lee et al. “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of 
Hierarchical Representations”

Car

yx

λ1 λ3 λ4λ2
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Deep Learning: Joint Training of all Parameters

• Lee et al. “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of 
Hierarchical Representations”

Car

yx

λ1 λ3 λ4λ2
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Deep Learning: Joint Training of all Parameters

• Lee et al. “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of 
Hierarchical Representations”

Car

yx

λ1 λ3 λ4λ2
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Deep Learning: Joint Training of all Parameters

• Setting
generate output y for input x (forward pass)
when there is an error, propagate error backwards to update weights  (error back propagation)

Car?

yx

λ1 λ3 λ4λ2
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Deep Learning: Joint Training of all Parameters

• Setting
generate output y for input x (forward pass)
when there is an error, propagate error backwards to update weights  (error back propagation)

Error?

yx

λ1 λ3 λ4λ2
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Summary of Main Ideas in Deep Learning

• Learning of feature extraction (across many layers)

• Efficient and trainable systems by differentiable building blocks

• Composition of deep architectures via non-linear modules

• “End-to-End” training: no differentiation between feature extraction and classification



Thank you

Acknowledges: some slides and material from Bernt Schiele, Mario Fritz, Fei-Fei Li, Justin 
Johnson, Serena Yeung, Rob Fergus, Rakshith Shetty, Seong Joon Oh


