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Tournament-based algorithm
Even without contention, Peterson’s algorithm costs O(n2)

A first way to reduce this cost is by using a tournament of MUTEX between pairs of 
processes:

By using Peterson’s algorithm
for 2 proc, a process wins after
⎡log2 n⎤ competitions, each of
constant cost.
 à O(log n)
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A constant-time algorithm (for n processes)
The cost can be further reduced to O(1).
To begin, consider the following idea:

 Initialize Y at ⊥, X at any value (e.g., 0)
 lock(i) :=     unlock(i) :=

  X ß i          Y ß ⊥ 
   if Y ≠ ⊥ then FAIL        return

        else Y ß i

          if X = i then return

             else FAIL

Without contention, this requires 4 accesses to the registers for entering the CS
Problem: 
• we don’t want the FAIL (that forces the process to invoke lock again and again), but 

an implementation of lock that keeps the process inside this primitive until it wins
• It is possible to have an execution where nobody accesses its CS
 à if repeated for ever, enatils a deadlock

3



Fast MUTEX algorithm (by Lamport)
Initialize Y at ⊥, X at any value (e.g., 0)

lock(i) :=

*  FLAG[i] ß up

   X ß i

   if Y ≠ ⊥ then FLAG[i] ß down

     wait Y = ⊥
     goto *

       else Y ß i

     if X = i then return

        else FLAG[i] ß down

      ∀j.wait FLAG[j] = down
      if Y = i then return

unlock(i) :=       else wait Y = ⊥
 Y ß ⊥     goto *

 FLAG[i] ß down

 return
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MUTEX: if pi is in CS, then no other pj can simultaneaously be in CS

Proof:
How can pi enter its CS?

a) F[i]ßup  Xßi    Y=⊥    Yßi      X=i              CS
      ------|---------|--------|---------|----------|------------------------>
    For pj to enter its CS, it must 
    find Y at ⊥, so it must read Y
    here                                        
Where did pj write X?
                             not here, otherwise pi would not have read i in X
So, it must have 
written X here.   
Hence, when pj reads X, it finds it different from j
 à it must wait for pi’s unlock before starting again
 à pj cannot be in CS while pi is
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b)     F[i]ßup  Xßi    Y=⊥    Yßi      X≠i    F[i]ßdown  ∀k.F[k]=down   Y=i         CS

      ------|-----|------|------|------|-------|-------------|---------|----------->
    pj must read Y
    here                                        
Where did pj write X?
    If here, 
    like (a)   
         So, let pj write X here
  - if pj reads X at j à it enters its CS, that however
                                    must be finished before
    à pj’s CS doesn’t overlap with pi’s one
  - otherwise, pj must have written Y before pi (since pi finds
    Y at i)
    à pj is blocked until pi unlocks
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Deadlock freedom: let pi invoke lock

• If it eventually wins à √

• If it is blocked for ever, where can it be blocked?
1.   In the second wait Y = ⊥
 à in this case, it read a value in Y different from i
 à there is a ph that wrote Y after pi
 à let us consider the last of such ph’s à it will eventually win à √
2.   In the ∀j.wait FLAG[j]=down
 à this wait cannot block a process for ever
  - if pj doesn’t lock, it flag is down
  - if pj doesn’t find Y at ⊥, it puts its flag down
  - if pj doesn’t find X at j, it puts its flag down
     otherwise pj enters its CS and eventually unlocks (flag down) 7



3. In the first wait Y = ⊥
 à since pj read a value different from ⊥, there is at least one pk that
      wrote Y before (but has not yet unlocked)

 à if pk eventually enters its CS à √
          otherwise, it must be blocked for ever as well. Where?
  - In the second wait Y = ⊥: but then there exists a ph that eventually
     enters its CS (see point 1 above)  à √

 - In the ∀j.wait FLAG[j]=down: this wait cannot block a process 
    for ever (see point 2 above)
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Fast MUTEX algorithm (by Lamport)
Without contention, this algorithm requires 5 accesses to the shared registers

It can be proved to satisfy MUTEX and deadlock freedom (you can easily built a scenario 
where a process is starved)

  à we will see that every deadlock-free algorithm can be turned into a bounded
       bypass one (but with a quadratic bound…)

To sum up: with atomic R/W registers, we have
• With 2 processes, a O(1) algorithm that satisfies bounded bypass (with bound 1)
• With n processes:

• a O(n2) algorithm that satisfies starvation freedom
• a O(log n) algorithm that satisfies bounded bypass (with bound ⎡log2 n⎤)
• a O(1) algorithm that satisfies deadlock freedom
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From deadlock freedom to bounded bypass
Let DLF be a deadlock free protocol for MUTEX.
We now want to turn it into a bounded bypass protocol for MUTEX

Round Robin algorithm
 à the name comes from a middle age habit for signing petitions, called
      Ruban Rond (that means «round ribbon»)
  à a circular way of signing, to hide the identity of the initiator

Initialize FLAG[i] to down (∀i) and TURN to any proc.id.

lock(i) :=    unlock(i) :=
   FLAG[i] ß up      FLAG[i] ß down
   wait (TURN = i OR        if FLAG[TURN] = down then
  FLAG[TURN] = down)   TURN ß (TURN+1) mod n
   DLF.lock(i)       DLF.unlock(i)
   return       return
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MUTEX for RR algorithm follows from the assumed MUTEX of DLF

Deadlock freedom of RR: if at least one process invokes RR.lock, then at least one 
process enters the CS.

Proof:
Since DLF enjoys deadlock freedom, it suffices to prove that at least one process 
invokes DLF.lock (i.e., at least one proc exists from its wait)

If TURN=k and pk invoked lock, then it finds TURN = k and exits its wait
Otherwise, any other process finds FLAG[TURN]=down  and exits from its wait
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Lemma 1: If TURN = i and FLAG[i] = up, then pi enters the CS in at most (n-1) 
iterations

Proof:
OBS1: TURN changes only when FLAG[i] is down (i.e., after pi has completed 

its CS)
OBS2: FLAG[i]=up à either pi is in its CS à √
           or pi is competing for its CS à it eventually invokes
       (or has already invoked)
       DLF.lock
OBS3: if pj invokes lock after that FLAG[i] is set, pj blocks in its wait

Let Y be the set of processes competing for the CS (i.e., suspended on DLF.lock)
• Because of OBS2, i ∈ Y
• Because of OBS3, once FLAG[i] is set, Y cannot grow anymore
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• Because DLF is deadlock free, eventually one py ∈ Y wins
 If y=i à √
 otherwise, Y shrinks by one (the py that entered the CS). Indeed:
  because of OBS1, TURN (and FLAG[TURN]) don’t change
   à  py cannot enter Y again
      We can iterate this reasoning and eventually pi will win
 à the worst case is when Y contains all proc’s and pi is the last winner

Lemma 2: If FLAG[i] = up, then TURN is set to i in at most (n-1)2 iterations
Proof:
If TURN=i when FLAG[i] is set à √
By Deadlock freedom of RR, at least one proc eventually unlocks
• If FLAG[TURN]=down, then TURN is increased; othw., by Lemma1 pTURN 

wins in at most (n-1) iterations (and increases TURN)
• If now TURN=i then √; otherwise, we repeat the reasoning
The worst case is when TURN=(i+1) mod n when FLAG[i] is set
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Bounded bypass of RR: if a process invokes RR.lock, then it enters the CS in at most  
n(n-1)  iterations

Proof: 
• pi invokes lock à FLAG[i] is set to up
• By lemma 2, in (n-1)2 itrerations TURN is set to i
• By lemma 1, in (n-1) iterations pi enters the CS
• (n-1)2 + (n-1) = n(n-1)
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