
CONCURRENT SYSTEMS
LECTURE 10
Prof. Daniele Gorla

Consensus Number
Which objects allow for a wait free impementation of (binary) consensus?
 à the answer depends on the number of participants

The consensus number of an object of type T is the greatest number n such that it is
possible to wait free implement a consensus object in a system of n processes by only
using objects of type T and atomic R/W registers.

For all T, CN(T) > 0; if there is no sup, we let CN(T) := +∞

Thm: let CN(T1) < CN(T2), then there exists no wait free implementation of objects of
type T2 in a system of n processes that only uses objects of type T1 and atomic RW reg.s,
for all n s.t. CN(T1) < n ≤ CN(T2).
Proof
• Fix such an n; by contr., there exists a wait free implementation of objects of type T2 in a system

of n processes that only uses objects of type T1 and atomic RW reg.s.
• Since n ≤ CN(T2), by def. of CN, there exists a wait free implementation of consensus in a system

of n processes that only uses objects of type T2 and atomic RW reg.s.
• Hence, there exists a wait free implementation of consensus in a system of n processes that only

uses objects of type T1 and atomic RW reg.s.
 à contraddiction with CN(T1) < n Q.E.D.

2

Schedules and Configurations

Schedule = sequence of operation invocations issued by processes

Configuration = the global state of a system at a given execution time (values of the
shared memory + local state of every process)

Given a configuration C and a schedule S, we denote with S(C) the configuration
obtained starting from C and applying S

Let us consider binary consensus implemented by an algorithm A by using base
objects and atomic R/W registers; let us call SA a schedule induced by A.

A configuration C obtained during the execution of A is called
• v-valent if SA(C) decides v, for every SA;
• monovalent, if there exists v ∈ {0,1} s.t. C is v-valent;
• bivalent, otherwise.

3

Fundamental theorem
Thm: If A wait-free implements binary consensus for n processes, then there exists a bivalent

initial configuration.
Proof:
1. Let Ci be the initial config. where all pj (for j ≤ i) propose 1 and all the others propose 0
2. By validity, C0 is 0-valent and Cn is 1-valent
3. By contradiction, assume all Ci to be monovalent
4. By (2), there exists an i such that Ci-1 is 0-valent and Ci is 1-valent
5. By definition, Ci-1 and Ci only differ in the value proposed by pi (0 and 1, resp.)
6. Consider an execution of A where pi is blocked for a very long period

• by wait freedom, all other processes eventually decide
• call S the scheduling from the beginning to the point in which all processes but

pi have decided
• since Ci-1 is 0-valent, all other processes decide 0
• By (5) and because pi is sleeping in S, also in S(Ci) all other processes decide 0
• If in S(Ci) we resume pi and it decides 1, we contradict agreement
• If pi decides 0, we contradict 1-valence of Ci.
 Q.E.D.

4

CN(Atomic R/W registers) = 1
Thm: There exists no wait-free implementation of binary consensus for 2 processes

that uses atomic R/W registers.
Proof:
By contradiction, assume A wait-free, with processes p and q.

By ther previous result, it has an initial bivalent configuration C.
 à let S be a sequence of operations s.t. C’ = S(C) is maximally bivalent
 (i.e., p(S(C)) is 0-valent and q(S(C)) is 1-valent, or viceversa)

p(C’) can be R1.read() or R1.write(v) and q(C’) can be R2.read() or R2.write(v’)

1. R1 ≠ R2
 Whatever operations p and q issue, we have that q(p(C’)) = p(q(C’))
 But q(p(C’)) is 0-val (because p(C’) is) whereas p(q(C’)) is 1-val

2. R1 = R2 and both operations are a read
 Like point (1)

5

⚡

⚡

CN(Atomic R/W registers) = 1

6

3. R1 = R2, with p that reads and q that writes (or viceversa)
 Remark: only p can distinguish C’ from p(C’) (reads put the value read in a
 local variable, visible only by the process that performed the read)
 Let S’ be the scheduling from C’ where p stops and q decides:
 à S’ starts with the write of q
 à S’ leads q to decide 1, since q(C’) is 1-val
 Consider p(C’) and apply S’
 à because of the initial remark, q decides 1 also here
 Reactivate p
 à if p decides 0, then we would violate agreement
 à if p decides 1, we contradict 0-valence of p(C’)

4. R1 = R2 and both operations are a write
 Remark: q(p(C)) = q(C) cannot be distinguished by q since the value written
 by p is lost after the write of q
 Then, work like in case (3).
 Q.E.D.

⚡

⚡

CN(Test&set) = 2
TS a test&set object init at 0

 PROP array of proposals, init at whatever

 propose(i, v) :=

 PROP[i] ß v

 if TS.test&set() = 0 then return PROP[i] else return PROP[1-i]

Wait-freedom, Validity and Integrity hold by construction.
Agreement: the first that performs test&set receives 0 and decides his proposal; the other one

receives 1 and decides the other proposal.

Thm.: there exists no A wait free that implements binary consensus for atomic R/W registers and
test&set objects for 3 processes.

Proof:
The structure is the same as the previous proof. Consider 3 proc.’s p, q and r.
Let C be bivalent and S maximal s.t. S(C) (call it C’) is bivalent:
 à p(C’) is 0-val, q(C’) is 1-val and r(C’) is monoval (for example)
Let’s assume that
• at C’ r stops for a long time
• opp and opq are the next operations that p and q issue from C’ by following A

7

1. opp and opq are both R/W operations on atomic registers à like in the previous proof

2. One is an operation on an atomic register and the other one is a test&set, or both are
 test&set but on different objects
 à like the first case of the previous proof, since p(q(C’)) = q(p(C’))

3. They are both test&set on the same object
 à p(q(C’)) is 1-val whereas q(p(C’)) is 0-val

 Let us now stop both p and q and resume r à r cannot see any difference between
 p(q(C’)) and q(p(C’))
 (the only diff.’s are the values locally
 stored by p and q as result of T&S)

 Let S’ be a schedule of operations only from r that leads p(q(C’)) to a decision
 (that must be 1)
 Since r cannot see any difference between p(q(C’)) and q(p(C’)), if we run S’ from
 q(p(C’)) we must decide 1 as well
 à in contradiction with q(p(C’)) be 0-val

CN(Swap) = CN(Fetch&add) = 2
S a swap object init at ⊥

 PROP array of proposals, init at whatever

 propose(i, v) :=
 PROP[i] ß v
 if S.swap(i) = ⊥ then return PROP[i] else return PROP[1-i]

 FA a fetch&add object init at 0
 PROP array of proposals, init at whatever

 propose(i, v) :=
 PROP[i] ß v
 if FA.fetch&add(1) = 0 then return PROP[i] else return PROP[1-i]

REMARK: Similarly to Test&set, we can prove that no consensus is possible with 3 processes.
9

CN(Compare&swap) = ∞

Let us consider a verison of the compare&swap where, instead of returning a boolean, it always
returns the previous value of the object, i.e.:

 X.compare&swap(old,new) :=
 tmp ß X
 atomic if tmp = old then X ß new
 return tmp

 CS a compare&swap object init at ⊥

 propose(v) :=
 tmp ß CS.compare&swap(⊥,v)
 if tmp = ⊥ then return v else return tmp

Exercise: devise a consensus object with CN = ∞ by using the compare&swap that returns
booleans.

10

