vault backup: 2024-10-02 23:25:27
This commit is contained in:
parent
4039c998cf
commit
0b75cd23d3
14 changed files with 264 additions and 23 deletions
0
().md
Normal file
0
().md
Normal file
75
.obsidian/workspace.json
vendored
75
.obsidian/workspace.json
vendored
|
@ -8,31 +8,53 @@
|
|||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "1391874bd127fece",
|
||||
"id": "fce83e74db3de5b7",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"type": "pdf",
|
||||
"state": {
|
||||
"file": "Foundation of data science/slides/Untitled.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
"file": "Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||
"page": 13,
|
||||
"left": -26,
|
||||
"top": 2,
|
||||
"zoom": 0.5666666666666667
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "160ca1e7ba4d7af7",
|
||||
"id": "24553d742ee49625",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"type": "pdf",
|
||||
"state": {
|
||||
"file": "conflict-files-obsidian-git.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
"file": "Autonomous Networking/slides/3 WSN.pdf",
|
||||
"page": 46,
|
||||
"left": -26,
|
||||
"top": 382,
|
||||
"zoom": 0.5666666666666667
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 1
|
||||
},
|
||||
{
|
||||
"id": "730530e270323c7d",
|
||||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "06d416b60db86f57",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "Autonomous Networking/notes/3 WSN.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"direction": "vertical"
|
||||
|
@ -82,7 +104,8 @@
|
|||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 300
|
||||
"width": 300,
|
||||
"collapsed": true
|
||||
},
|
||||
"right": {
|
||||
"id": "11560c155f3d8f6e",
|
||||
|
@ -98,7 +121,7 @@
|
|||
"state": {
|
||||
"type": "backlink",
|
||||
"state": {
|
||||
"file": "conflict-files-obsidian-git.md",
|
||||
"file": "Autonomous Networking/slides/3 WSN.pdf",
|
||||
"collapseAll": false,
|
||||
"extraContext": false,
|
||||
"sortOrder": "alphabetical",
|
||||
|
@ -115,7 +138,7 @@
|
|||
"state": {
|
||||
"type": "outgoing-link",
|
||||
"state": {
|
||||
"file": "conflict-files-obsidian-git.md",
|
||||
"file": "Autonomous Networking/slides/3 WSN.pdf",
|
||||
"linksCollapsed": false,
|
||||
"unlinkedCollapsed": true
|
||||
}
|
||||
|
@ -138,7 +161,7 @@
|
|||
"state": {
|
||||
"type": "outline",
|
||||
"state": {
|
||||
"file": "conflict-files-obsidian-git.md"
|
||||
"file": "Autonomous Networking/slides/3 WSN.pdf"
|
||||
}
|
||||
}
|
||||
},
|
||||
|
@ -172,8 +195,22 @@
|
|||
"obsidian-git:Open Git source control": false
|
||||
}
|
||||
},
|
||||
"active": "160ca1e7ba4d7af7",
|
||||
"active": "24553d742ee49625",
|
||||
"lastOpenFiles": [
|
||||
"Autonomous Networking/notes/3 WSN.md",
|
||||
"Autonomous Networking/slides/3 WSN.pdf",
|
||||
"Biometric Systems/final notes/Untitled.md",
|
||||
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||
"Biometric Systems/final notes/1. Introduction.md",
|
||||
"[LEZIONE2_Indici_di_prestazione.pdf.md",
|
||||
"[[[LEZIONE2_Indici_di_prestazione.pdf.md",
|
||||
"().md",
|
||||
"a.md",
|
||||
"Pasted image 20241002181936.png",
|
||||
"Pasted image 20241002181932.png",
|
||||
"Pasted image 20241002135922.png",
|
||||
"Pasted image 20241002114133.png",
|
||||
"Pasted image 20241002114048.png",
|
||||
"Foundation of data science/slides/Untitled.md",
|
||||
"conflict-files-obsidian-git.md",
|
||||
"Autonomous Networking/slides/2 RFID.pdf",
|
||||
|
@ -183,23 +220,15 @@
|
|||
"Autonomous Networking/images/Pasted image 20240928193208.png",
|
||||
"Autonomous Networking/images/Pasted image 20240928191316.png",
|
||||
"Autonomous Networking/images/Pasted image 20240928183123.png",
|
||||
"Autonomous Networking/images/Pasted image 20240928181424.png",
|
||||
"Autonomous Networking/images/Pasted image 20240928181304.png",
|
||||
"Autonomous Networking/images/Pasted image 20240928175441.png",
|
||||
"Autonomous Networking/images/Pasted image 20240928165943.png",
|
||||
"Autonomous Networking/images/Pasted image 20240928165439.png",
|
||||
"Autonomous Networking/slides",
|
||||
"Autonomous Networking/notes",
|
||||
"Autonomous Networking/images",
|
||||
"Autonomous Networking",
|
||||
"Foundation of data science/slides/notes 2.md",
|
||||
"Foundation of data science/slides/FDS_intro_new.pdf",
|
||||
"Biometric Systems/final notes/1. Introduction.md",
|
||||
"Foundation of data science/slides",
|
||||
"Foundation of data science",
|
||||
"LICENSE",
|
||||
"Biometric Systems/slides/lezione1 notes.md",
|
||||
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||
"Untitled.canvas",
|
||||
"Untitled.md"
|
||||
]
|
||||
|
|
113
Autonomous Networking/notes/3 WSN.md
Normal file
113
Autonomous Networking/notes/3 WSN.md
Normal file
|
@ -0,0 +1,113 @@
|
|||
The main difference between an RFID network and a WSN is that nodes:
|
||||
- are battery powered
|
||||
- can sense the environment
|
||||
- can listen to the channel (carrier sense) and transmit spontaneously
|
||||
- can make more complex computation
|
||||
- can send packets to other nodes (e.g. for multi-hop communication)
|
||||
|
||||
#### Roles of partecipants in WSN
|
||||
- Sources of data: measure data, report them somewhere
|
||||
- Sinks of data: interested in receiving data from WSN
|
||||
- Actors/actuators: control some devices based on data
|
||||
|
||||
#### Deployiment options
|
||||
- Random deployiment
|
||||
- dropped from an aircraft
|
||||
- usually uniform random distribution for nodes over finite area is assumed
|
||||
- Regular deployment
|
||||
- wel planned, fixed
|
||||
- not necessarily geometric structure, but that is often a convenient assumption
|
||||
- Mobile sensor nodes
|
||||
- Can move to compensate for deployment shortcomings
|
||||
- Can be passively moved by some external force (wind, water)
|
||||
- Can actively seek out "interesting" areas
|
||||
#### Characteristics of WSN
|
||||
- Scalability
|
||||
- they need to support **large number of nodes**
|
||||
- performance should not degrade with increasing number of nodes
|
||||
- Wide range of densities (very application dependent)
|
||||
- Limited resources for each device
|
||||
- low amount of energy
|
||||
- low cost, size and weight
|
||||
- nodes may not have a global ID (e.g. an IP)
|
||||
- Mostly static topology
|
||||
|
||||
- Service in WSN (not simply moving bits like traditional networks)
|
||||
- in-network processing
|
||||
- provide answers
|
||||
- comunication is triggered by events
|
||||
- asymmetric flow of information (from sensors to sink)
|
||||
- QoS
|
||||
- traditional metrics do not apply
|
||||
- Fault tollerance
|
||||
- be robust against node failure
|
||||
- running out of energy, physical destruct
|
||||
- Lifetime
|
||||
- the network should fulfill as long as possible
|
||||
- lifetime of individual nodes relatively unimportant
|
||||
- but if a critical node dies, the network dies
|
||||
- Programmability
|
||||
- being able to re-program nodes on-field, to improve flexibility
|
||||
- Maintainability
|
||||
- WSN has to adapt to changes
|
||||
|
||||
#### Typical Adopted Mechanisms
|
||||
- Multi-hop wireless communication
|
||||
- Energy-efficient operation (both for computation, sensing, actuation)
|
||||
- Self-configuration
|
||||
- Collaboration & in-network processing
|
||||
- the nodes in the network collaborate towards a joint goal
|
||||
- pre-processing the data before sending it to the sink, to improve efficiency
|
||||
|
||||
#### Mechanism to meet requirements
|
||||
- Data centric networking
|
||||
- focussing network design on data, not on node identifiers
|
||||
- Locality
|
||||
- do things locally as far as possible
|
||||
- Exploit tradeoffs
|
||||
- e.g between invested energy and accuracy
|
||||
|
||||
> [!PDF|yellow] [[3 WSN.pdf#page=29&color=yellow|3 WSN, p.29]]
|
||||
> > WSN: reasoning of existence
|
||||
>
|
||||
> collect, couple, provide, establish
|
||||
#### Main sensor node components
|
||||
- antenna and RF transceiver
|
||||
- memory unit
|
||||
- CPU
|
||||
- sensor unit (i.e. thermostat)
|
||||
- power source (typ. battery)
|
||||
- operating system
|
||||
- TinyOS
|
||||
|
||||
sensing, processing and networking is all done by the sensor node.
|
||||
|
||||
#### WSN vs conventional networks
|
||||
|
||||
| **Conventional networks** | **WSN** |
|
||||
| ------------------------------------------------------------------- | --------------------------------------------------------- |
|
||||
| general purpose design | serving a single application or a bouquet of applications |
|
||||
| network performance and latency | energy is the primary challenge |
|
||||
| devices and networks operate in controlled / mild environments | unattended, harsh conditions & hostile environments |
|
||||
| global knowledge is feasible and centralized management is possible | localized decisions - no support by central entity |
|
||||
#### Wireless signal issues
|
||||
- **Attenuation**: the strength of the signal decreases rapidly over distance
|
||||
- **Multi-path propagation**:
|
||||
- when a radio wave encounter an obstacle, all or part of the wave is reflected, with a loss of power
|
||||
- a source signal can arrive, to successive reflections, to reach a station through multiple paths
|
||||
- **Interference:**
|
||||
- from the same source (multi-path propagation): signal arrives multiple time
|
||||
- from multiple sources: more stations transmit simultaneously
|
||||
|
||||
We use **SNR** to measure the ratio of good to bad signal (signal to noise). Higher is better.
|
||||
|
||||
> [!PDF|yellow] [[3 WSN.pdf#page=49&selection=77,0,77,15&color=yellow|3 WSN, p.49]]
|
||||
> > Synchronization
|
||||
>
|
||||
> nodes have clocks but they may not be synchronized!
|
||||
|
||||
To address these issues, we use MAC protocols. We need a protocol suitable for wireless networks, which emphasize energy-efficient operation.
|
||||
### CSMA/CA
|
||||
![[Pasted image 20241002114133.png]]
|
||||
|
||||
IFS is random, so hopefully only a node starts transmitting at the same time.
|
BIN
Autonomous Networking/slides/3 WSN.pdf
Normal file
BIN
Autonomous Networking/slides/3 WSN.pdf
Normal file
Binary file not shown.
99
Biometric Systems/final notes/Untitled.md
Normal file
99
Biometric Systems/final notes/Untitled.md
Normal file
|
@ -0,0 +1,99 @@
|
|||
#### Problems of biometric systems:
|
||||
- wide intra-class variations
|
||||
- maybe different facial expression, different light, different view point...
|
||||
- very small inter-class variations
|
||||
- two different person very similar (i.e. twins)
|
||||
|
||||
- possible spoofing attacks, in different moments
|
||||
![[Pasted image 20241002181936.png]]
|
||||
|
||||
- [non universality](LEZIONE2_Indici_di_prestazione.pdf#page=6&selection=0,10,0,26&color=yellow|LEZIONE2_Indici_di_prestazione, p.6)
|
||||
- e.g. people with no voice, people with cataract, people with poor fingerprints...
|
||||
|
||||
Most difficult traits to exploit:
|
||||
- retina fundus
|
||||
- behavioral traits (i.e. way of walking)
|
||||
- handwriting
|
||||
|
||||
### [What to compare?](LEZIONE2_Indici_di_prestazione.pdf#page=8&selection=0,10,0,26&color=yellow|LEZIONE2_Indici_di_prestazione, p.8)
|
||||
- **Sample
|
||||
- raw captured data
|
||||
- **Hand-crafted features**
|
||||
- manually engineered by the data scientist and extracted from samples
|
||||
- can also be substituted with **embeddings**: features automatically extracted by deep architectures
|
||||
- **Template**
|
||||
- collection of features extracted from the row data, examples:
|
||||
- a histogram representing the frequencies of relevant values in the image (e.g. greylevel values)
|
||||
- a vector of values each representing a relevant measure (e.g. Bertillon measures)
|
||||
- time series of acceleration values (one per axis)
|
||||
- a set of triplets as for relevant fingerprint points representing the coordinates of the points and the direction of the tangent to the ridge in that point.
|
||||
|
||||
|
||||
> [!PDF|red] [[LEZIONE2_Indici_di_prestazione.pdf#page=8&selection=11,1,14,16&color=red|LEZIONE2_Indici_di_prestazione, p.8]]
|
||||
> > Hand-crafted features
|
||||
>
|
||||
> not the template of the entire biometric system.
|
||||
|
||||
|
||||
### Comparing templates
|
||||
- Euclidian distance
|
||||
- Cosine similarity
|
||||
- cosine of the angle between two vectors
|
||||
- Pearson correlation
|
||||
- Bhattacharyya distance
|
||||
|
||||
|
||||
> [!PDF|yellow] [[LEZIONE2_Indici_di_prestazione.pdf#page=9&selection=8,0,10,31&color=yellow|LEZIONE2_Indici_di_prestazione, p.9]]
|
||||
> > or cosine similarity may provide either a distance measure or a similarity measure
|
||||
>
|
||||
> shows "more stuff" than Euclidian distance, such as orientation ecc.. Shows how templates are similar to eachother. While distance shows how templates are... distant!
|
||||
|
||||
> [!PDF|yellow] [[LEZIONE2_Indici_di_prestazione.pdf#page=10&selection=3,1,4,21&color=yellow|LEZIONE2_Indici_di_prestazione, p.10]]
|
||||
> > (Pearson) Correlation
|
||||
>
|
||||
> how signals are similar to eachother. Often used to compare fingerprints, by computing the correlation between two fingerprints.
|
||||
|
||||
Histograms needs other ways to be compared.
|
||||
|
||||
The same happens with time series: speed for example may speed the final outcome of the time series, even if the patterns are the same.
|
||||
|
||||
So what do we do?
|
||||
sometimes we use correlation, but Dynamic time Warping is the most used.
|
||||
|
||||
![[Pasted image 20241002135922.png]]
|
||||
|
||||
each point is paired with the most convenient one. It's not necessaty that points corresponds to the same instant in time.
|
||||
|
||||
if using deep learning we should use the architecture to extract the embeddings (for both gallery and probe templates).
|
||||
|
||||
//
|
||||
after normalization in range [0, 1] we will have that distance = 1 - similarity.
|
||||
|
||||
#### Possible errors: verification
|
||||
- Genuine Match (GM, GA): the claimed identity is true and subject is accepted
|
||||
- False Rejection (FR, FNM, type I error): claimed identity is true but the subjet is rejected
|
||||
- Genuine Reject (GR, GNM): an impostor is rejected
|
||||
- False Acceptance (FA, FM, type II error): an impostor is accepted :/
|
||||
|
||||
It's important to define a good threshold.
|
||||
If too high we will get a lot of false acceptance. If too low we will get a lot of false rejection!
|
||||
|
||||
When computing rates:
|
||||
- False Rejection Rate (FRR) is the number of FR divided by ONLY the number of GM+FR.
|
||||
- in fact, GM + FR have the same denominator and sum up to 1.
|
||||
- False Acceptance Rate is the number of FA divided by FA + GR
|
||||
|
||||
Equal Error Rate is the value at a specific threshold, where FAR and FRR are the same value.
|
||||
|
||||
two synthetic metrics could be ERR and area below ROC curve.
|
||||
|
||||
(we might have more templates for the same person to address inter-class variation.
|
||||
Of course templates should be different, not computed i.e. by frames of the same video, as some of them could be blurred and close frames are exactly the same!)
|
||||
|
||||
> [!PDF|yellow] [[LEZIONE2_Indici_di_prestazione.pdf#page=20&selection=119,0,119,4&color=yellow|LEZIONE2_Indici_di_prestazione, p.20]]
|
||||
> > When
|
||||
>
|
||||
> in false acceptance we can have two possible scenarios
|
||||
> - pj does not belong to the gallery (most trivial)
|
||||
> - pj belongs to an enrolled subject but the probe claimed another identity, not the real one.
|
||||
|
Binary file not shown.
BIN
Pasted image 20241002114048.png
Normal file
BIN
Pasted image 20241002114048.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 58 KiB |
BIN
Pasted image 20241002114133.png
Normal file
BIN
Pasted image 20241002114133.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 65 KiB |
BIN
Pasted image 20241002135922.png
Normal file
BIN
Pasted image 20241002135922.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 37 KiB |
BIN
Pasted image 20241002181932.png
Normal file
BIN
Pasted image 20241002181932.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 143 KiB |
BIN
Pasted image 20241002181936.png
Normal file
BIN
Pasted image 20241002181936.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 143 KiB |
0
[LEZIONE2_Indici_di_prestazione.pdf.md
Normal file
0
[LEZIONE2_Indici_di_prestazione.pdf.md
Normal file
0
[[[LEZIONE2_Indici_di_prestazione.pdf.md
Normal file
0
[[[LEZIONE2_Indici_di_prestazione.pdf.md
Normal file
0
a.md
Normal file
0
a.md
Normal file
Loading…
Reference in a new issue