vault backup: 2025-04-14 08:54:56

This commit is contained in:
Marco Realacci 2025-04-14 08:54:56 +02:00
parent 7f4d6e4ef7
commit 1ea8779ad5

View file

@ -67,3 +67,9 @@ However, p0 and q0 are not bisimilar: the transition q0 -> a -> q1 is not bisimu
$S = \{(p0,q0), (p1,q1), (p2,q1), (p0,q2)\}$ $S = \{(p0,q0), (p1,q1), (p2,q1), (p0,q2)\}$
$S^{1} = \{(q0,p0), (q1,p1), (q1,p2), (q2,p0)\}$ $S^{1} = \{(q0,p0), (q1,p1), (q1,p2), (q2,p0)\}$
>[!def] Theorem
>Bisimilarity is an equivalence relation
*Proof:*
Reflexivity: we have to show that q q, for every q. Consider the following relation