vault backup: 2025-04-14 17:20:00
This commit is contained in:
parent
79fd2c2bdd
commit
211d6e3e88
1 changed files with 2 additions and 17 deletions
|
@ -137,20 +137,5 @@ Now use the **right parallel rule**:
|
|||
$$\frac{B' \xrightarrow{\bar{c}} B}{A \mid B' \xrightarrow{\bar{c}} A \mid B}$$
|
||||
✅ **Third transition:**
|
||||
$$A \mid B' \xrightarrow{\bar{c}} A \mid B$$
|
||||
|
||||
## 🔄 Full Transition Path
|
||||
|
||||
Putting it all together, the full trace is:
|
||||
|
||||
1. A∣B→aA′∣BA \mid B \xrightarrow{a} A' \mid B
|
||||
|
||||
2. A′∣B→τA∣B′A' \mid B \xrightarrow{\tau} A \mid B'
|
||||
|
||||
3. A∣B′→cˉA∣BA \mid B' \xrightarrow{\bar{c}} A \mid B
|
||||
|
||||
|
||||
So the system loops back to the starting state!
|
||||
|
||||
---
|
||||
|
||||
Let me know if you want a **state diagram in LaTeX (TikZ)** for this or a different trace involving `B'` and `A'` again!
|
||||
##### Synchronization
|
||||
I
|
Loading…
Add table
Add a link
Reference in a new issue