vault backup: 2025-03-18 16:35:04
This commit is contained in:
parent
f09563169c
commit
32053062f6
1 changed files with 5 additions and 2 deletions
|
@ -56,8 +56,11 @@ We now show that $\to$ is acyclic.
|
|||
- can this be a cycle?
|
||||
- $op1 \to_H op2$ means that $res(op1) <_H inv(op2)$
|
||||
- $op2 \to_X op3$ entails that $inv(op2) <_H res(op3)$
|
||||
- if not, as is a total order, we would have that $res(op3) <_H inv(op2)$, but we then would have $op3 \to_H op2$ a cycle of lenght 2...
|
||||
- $op2 \to_H op3$ entails that $inv(op2) <_H res(op3)$
|
||||
- if not, as is a total order, we would have that $res(op3) <_H inv(op2)$, but we then would have $op3 \to_H op2$, forming a cycle of lenght 2 because $op2 \to_X op3$, and we know cycles of lenght 2 are not possible...
|
||||
- $op3 \to_H op4$ means that $res(op3) <_H inv(op4)$
|
||||
|
||||
- We would then have that $res(op1) <_H inv(op2) <_H res(op3) <_H inv(op4)$
|
||||
- So by transitivity $res(op1) <_H inv(op4)$
|
||||
|
||||
|
||||
> [!PDF|red] class 6, p.6> we would have a cycle of length
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue