vault backup: 2025-04-14 16:40:00
This commit is contained in:
parent
c548cfa30d
commit
38494820ec
1 changed files with 111 additions and 1 deletions
|
@ -80,3 +80,113 @@ $$\frac{P_1 \xrightarrow{a} P_1' \quad P_2 \xrightarrow{\bar{a}} P_2'}{P_1 \mid
|
||||||

|

|
||||||
|
|
||||||
fino alla 7 compresa...
|
fino alla 7 compresa...
|
||||||
|
|
||||||
|
Sure Marco! Let's go step-by-step through the **CCS process transition example** in the figure, using:
|
||||||
|
|
||||||
|
- **Markdown for explanations**
|
||||||
|
|
||||||
|
- **LaTeX in Obsidian format** (with `$$...$$`) for math
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 📘 Definitions
|
||||||
|
|
||||||
|
We start with the following **process definitions**:
|
||||||
|
|
||||||
|
- A≜a.A′A \triangleq a.A'
|
||||||
|
|
||||||
|
- A′≜bˉ.AA' \triangleq \bar{b}.A
|
||||||
|
|
||||||
|
- B≜b.B′B \triangleq b.B'
|
||||||
|
|
||||||
|
- B′≜cˉ.BB' \triangleq \bar{c}.B
|
||||||
|
|
||||||
|
|
||||||
|
Our **initial process** is:
|
||||||
|
A∣BA \mid B
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## ▶️ Step 1: Transition from A
|
||||||
|
|
||||||
|
From the definition:
|
||||||
|
|
||||||
|
- A≜a.A′A \triangleq a.A'
|
||||||
|
So we can do:
|
||||||
|
|
||||||
|
|
||||||
|
A→aA′A \xrightarrow{a} A'
|
||||||
|
|
||||||
|
Using the **parallel rule** for the left-hand side:
|
||||||
|
|
||||||
|
A→aA′A∣B→aA′∣B\frac{A \xrightarrow{a} A'}{A \mid B \xrightarrow{a} A' \mid B}
|
||||||
|
|
||||||
|
✅ **First transition:**
|
||||||
|
|
||||||
|
A∣B→aA′∣BA \mid B \xrightarrow{a} A' \mid B
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## ▶️ Step 2: Synchronization: bˉ\bar{b} and bb
|
||||||
|
|
||||||
|
We now have:
|
||||||
|
|
||||||
|
- Left process: A′≜bˉ.AA' \triangleq \bar{b}.A
|
||||||
|
|
||||||
|
- Right process: B≜b.B′B \triangleq b.B'
|
||||||
|
|
||||||
|
|
||||||
|
From this, we can do:
|
||||||
|
|
||||||
|
- A′→bˉAA' \xrightarrow{\bar{b}} A
|
||||||
|
|
||||||
|
- B→bB′B \xrightarrow{b} B'
|
||||||
|
|
||||||
|
|
||||||
|
These actions **complement each other**, so we can apply the **synchronization rule**:
|
||||||
|
|
||||||
|
A′→bˉAB→bB′A′∣B→τA∣B′\frac{A' \xrightarrow{\bar{b}} A \quad B \xrightarrow{b} B'}{A' \mid B \xrightarrow{\tau} A \mid B'}
|
||||||
|
|
||||||
|
✅ **Second transition:**
|
||||||
|
|
||||||
|
A′∣B→τA∣B′A' \mid B \xrightarrow{\tau} A \mid B'
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## ▶️ Step 3: Transition from B'
|
||||||
|
|
||||||
|
From the definition:
|
||||||
|
|
||||||
|
- B′≜cˉ.BB' \triangleq \bar{c}.B
|
||||||
|
So:
|
||||||
|
|
||||||
|
|
||||||
|
B′→cˉBB' \xrightarrow{\bar{c}} B
|
||||||
|
|
||||||
|
Now use the **right parallel rule**:
|
||||||
|
|
||||||
|
B′→cˉBA∣B′→cˉA∣B\frac{B' \xrightarrow{\bar{c}} B}{A \mid B' \xrightarrow{\bar{c}} A \mid B}
|
||||||
|
|
||||||
|
✅ **Third transition:**
|
||||||
|
|
||||||
|
A∣B′→cˉA∣BA \mid B' \xrightarrow{\bar{c}} A \mid B
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 🔄 Full Transition Path
|
||||||
|
|
||||||
|
Putting it all together, the full trace is:
|
||||||
|
|
||||||
|
1. A∣B→aA′∣BA \mid B \xrightarrow{a} A' \mid B
|
||||||
|
|
||||||
|
2. A′∣B→τA∣B′A' \mid B \xrightarrow{\tau} A \mid B'
|
||||||
|
|
||||||
|
3. A∣B′→cˉA∣BA \mid B' \xrightarrow{\bar{c}} A \mid B
|
||||||
|
|
||||||
|
|
||||||
|
So the system loops back to the starting state!
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Let me know if you want a **state diagram in LaTeX (TikZ)** for this or a different trace involving `B'` and `A'` again!
|
Loading…
Add table
Add a link
Reference in a new issue