vault backup: 2025-04-14 16:40:00

This commit is contained in:
Marco Realacci 2025-04-14 16:40:00 +02:00
parent c548cfa30d
commit 38494820ec

View file

@ -79,4 +79,114 @@ $$\frac{P_1 \xrightarrow{a} P_1' \quad P_2 \xrightarrow{\bar{a}} P_2'}{P_1 \mid
![](images/Pasted%20image%2020250414104010.png) ![](images/Pasted%20image%2020250414104010.png)
fino alla 7 compresa... fino alla 7 compresa...
Sure Marco! Let's go step-by-step through the **CCS process transition example** in the figure, using:
- **Markdown for explanations**
- **LaTeX in Obsidian format** (with `$$...$$`) for math
---
## 📘 Definitions
We start with the following **process definitions**:
- A≜a.AA \triangleq a.A'
- A≜bˉ.AA' \triangleq \bar{b}.A
- B≜b.BB \triangleq b.B'
- B≜cˉ.BB' \triangleq \bar{c}.B
Our **initial process** is:
ABA \mid B
---
## ▶️ Step 1: Transition from A
From the definition:
- A≜a.AA \triangleq a.A'
So we can do:
A→aAA \xrightarrow{a} A'
Using the **parallel rule** for the left-hand side:
A→aAAB→aAB\frac{A \xrightarrow{a} A'}{A \mid B \xrightarrow{a} A' \mid B}
✅ **First transition:**
AB→aABA \mid B \xrightarrow{a} A' \mid B
---
## ▶️ Step 2: Synchronization: bˉ\bar{b} and bb
We now have:
- Left process: A≜bˉ.AA' \triangleq \bar{b}.A
- Right process: B≜b.BB \triangleq b.B'
From this, we can do:
- A→bˉAA' \xrightarrow{\bar{b}} A
- B→bBB \xrightarrow{b} B'
These actions **complement each other**, so we can apply the **synchronization rule**:
A→bˉAB→bBAB→τAB\frac{A' \xrightarrow{\bar{b}} A \quad B \xrightarrow{b} B'}{A' \mid B \xrightarrow{\tau} A \mid B'}
✅ **Second transition:**
AB→τABA' \mid B \xrightarrow{\tau} A \mid B'
---
## ▶️ Step 3: Transition from B'
From the definition:
- B≜cˉ.BB' \triangleq \bar{c}.B
So:
B→cˉBB' \xrightarrow{\bar{c}} B
Now use the **right parallel rule**:
B→cˉBAB→cˉAB\frac{B' \xrightarrow{\bar{c}} B}{A \mid B' \xrightarrow{\bar{c}} A \mid B}
✅ **Third transition:**
AB→cˉABA \mid B' \xrightarrow{\bar{c}} A \mid B
---
## 🔄 Full Transition Path
Putting it all together, the full trace is:
1. AB→aABA \mid B \xrightarrow{a} A' \mid B
2. AB→τABA' \mid B \xrightarrow{\tau} A \mid B'
3. AB→cˉABA \mid B' \xrightarrow{\bar{c}} A \mid B
So the system loops back to the starting state!
---
Let me know if you want a **state diagram in LaTeX (TikZ)** for this or a different trace involving `B'` and `A'` again!