vault backup: 2025-03-18 16:00:04
This commit is contained in:
parent
fc4341f99c
commit
4d9cc3b2e1
3 changed files with 15 additions and 13 deletions
4
.obsidian/community-plugins.json
vendored
4
.obsidian/community-plugins.json
vendored
|
@ -1,9 +1,9 @@
|
|||
[
|
||||
"obsidian-ocr",
|
||||
"pdf-plus",
|
||||
"obsidian-git",
|
||||
"mathlive-in-editor-mode",
|
||||
"smart-second-brain",
|
||||
"local-gpt",
|
||||
"companion"
|
||||
"companion",
|
||||
"pdf-plus"
|
||||
]
|
15
.obsidian/workspace.json
vendored
15
.obsidian/workspace.json
vendored
|
@ -34,10 +34,10 @@
|
|||
"type": "pdf",
|
||||
"state": {
|
||||
"file": "Concurrent Systems/slides/class 6.pdf",
|
||||
"page": 5,
|
||||
"left": -19,
|
||||
"top": 437,
|
||||
"zoom": 0.7998812351543944
|
||||
"page": 4,
|
||||
"left": -23,
|
||||
"top": 143,
|
||||
"zoom": 0.6627078384798101
|
||||
},
|
||||
"icon": "lucide-file-text",
|
||||
"title": "class 6"
|
||||
|
@ -100,8 +100,7 @@
|
|||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 307.5,
|
||||
"collapsed": true
|
||||
"width": 307.5
|
||||
},
|
||||
"right": {
|
||||
"id": "bc4b945ded1926e3",
|
||||
|
@ -215,10 +214,10 @@
|
|||
"companion:Toggle completion": false
|
||||
}
|
||||
},
|
||||
"active": "88f2e3a5b973712d",
|
||||
"active": "51157f32453cba69",
|
||||
"lastOpenFiles": [
|
||||
"Concurrent Systems/notes/6 - Atomicity.md",
|
||||
"Concurrent Systems/slides/class 6.pdf",
|
||||
"Concurrent Systems/notes/6 - Atomicity.md",
|
||||
"Concurrent Systems/notes/images/Pasted image 20250318090733.png",
|
||||
"Concurrent Systems/notes/images/Pasted image 20250318090909.png",
|
||||
"Concurrent Systems/slides/class 5.pdf",
|
||||
|
|
|
@ -39,13 +39,16 @@ Let $\to$ denote $\to_{H} \cup \bigcup_{X \in H} \to _{X}$
|
|||
We now show that $\to$ is acyclic.
|
||||
1. It cannot have cycles with 1 edge (i.e. self loops): indeed, if $op \to op$, this would mean that $res(op) < inv(op)$, which of course does not make any sense.
|
||||
|
||||
2. it cannot have cycles with 2 edges:
|
||||
2. It cannot have cycles with 2 edges:
|
||||
- let's assume that $op \to op' \to op$
|
||||
- both arrows cannot be $\to_H$ nor $\to_X$ (for some X), otw. it won't be a total order (and would be cyclic)
|
||||
- it cannot be that one is $\to_X$ and the other $\to_Y$ (for some $X \neq Y$), otherwise op/op' would be on 2 different objects.
|
||||
- **So it must b**e $op \to_X op' \to_H op$ (or vice versa)
|
||||
- **So it must b**e $op \to_X op' \to_H op$ *(or vice versa)*
|
||||
- then, $op' \to op$ means that $res(op') <_H inv(op)$
|
||||
- Since $\hat{S}_X$ is a linearization of $\hat{H}|_X$ and op/op' are on X, this implies $res(op') <_X inv(op)$, which means that $op' \to_X op$, and so $\to_X$ would be cyclic.
|
||||
- Since $\hat{S}_X$ is a linearization of $\hat{H}|_X$ and op/op' are on X (literally because we have op ->x op'), this implies $res(op') <_X inv(op)$, which means that $op' \to_X op$, and so it won't be a total order... So this is not possible either.
|
||||
|
||||
3. It cannot have cycles with more than 2 edges:
|
||||
1.
|
||||
|
||||
|
||||
> [!PDF|red] class 6, p.6> we would have a cycle of length
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue