From 4e8e16e924e47066a4c377427259429461e4b820 Mon Sep 17 00:00:00 2001 From: Marco Realacci Date: Mon, 28 Apr 2025 08:37:04 +0200 Subject: [PATCH] vault backup: 2025-04-28 08:37:04 --- .obsidian/workspace.json | 4 ++-- Concurrent Systems/notes/13 - Weak Bisimilarity.md | 13 ++++++++++++- 2 files changed, 14 insertions(+), 3 deletions(-) diff --git a/.obsidian/workspace.json b/.obsidian/workspace.json index ade353f..5315cd8 100644 --- a/.obsidian/workspace.json +++ b/.obsidian/workspace.json @@ -213,9 +213,9 @@ }, "active": "56150e6df7869900", "lastOpenFiles": [ - "Concurrent Systems/notes/12 - Calculus of communicating system.md", - "Concurrent Systems/notes/13 - Weak Bisimilarity.md", "Concurrent Systems/slides/class 13.pdf", + "Concurrent Systems/notes/13 - Weak Bisimilarity.md", + "Concurrent Systems/notes/12 - Calculus of communicating system.md", "Concurrent Systems/slides/class 12.pdf", "Concurrent Systems/notes/12b - CCS cose varie.md", "Concurrent Systems/notes/11 - LTSs and Bisimulation.md", diff --git a/Concurrent Systems/notes/13 - Weak Bisimilarity.md b/Concurrent Systems/notes/13 - Weak Bisimilarity.md index 73de9e7..2f7406f 100644 --- a/Concurrent Systems/notes/13 - Weak Bisimilarity.md +++ b/Concurrent Systems/notes/13 - Weak Bisimilarity.md @@ -13,4 +13,15 @@ $P \implies P'$ if and only if there exist $P_{0}, P_{1},\dots,P_{k}$ (for $k \g relation $\xRightarrow{\hat{\alpha}}$: - if $\alpha=\tau$ then $\xRightarrow{\hat{\alpha}}\triangleq\implies$ -- otherwise $\xRightarrow{\hat{\alpha}}\triangleq\implies\xrightarr$ \ No newline at end of file +- otherwise $\xRightarrow{\hat{\alpha}}\triangleq\implies\xrightarrow{\alpha}\implies$ + +S is a weak simulation if and only if $$\forall(p, q) \in S \space \forall p \xrightarrow{\alpha} p' \exists q' \space s.t. \space q\xRightarrow{\hat{\alpha}}q' \space and \space (p', q') \in S$$ +A relation S is called weak bisimulation if both $S$ and $S^{-1}$ are weak simulations. +We say that p and q are weakly bisimilar, written $p \approx q$, if there exists a weak bisimulation $S$ such that $(p, q) \in S$. + +**Prop:** +$\approx$ is a +1. equivalence +2. congruence +3. weak bisimulation +4. $\sim a$ \ No newline at end of file