vault backup: 2025-05-05 09:17:04
This commit is contained in:
parent
4a03352005
commit
65d4d02315
2 changed files with 5 additions and 2 deletions
3
.obsidian/workspace.json
vendored
3
.obsidian/workspace.json
vendored
|
@ -213,9 +213,9 @@
|
||||||
},
|
},
|
||||||
"active": "cdcc59f1bf6d4ae1",
|
"active": "cdcc59f1bf6d4ae1",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
"Pasted image 20250505090959.png",
|
|
||||||
"Concurrent Systems/slides/class 15.pdf",
|
"Concurrent Systems/slides/class 15.pdf",
|
||||||
"Concurrent Systems/notes/15 - A formal language for LTSs.md",
|
"Concurrent Systems/notes/15 - A formal language for LTSs.md",
|
||||||
|
"Pasted image 20250505090959.png",
|
||||||
"Pasted image 20250505090603.png",
|
"Pasted image 20250505090603.png",
|
||||||
"Pasted image 20250505085454.png",
|
"Pasted image 20250505085454.png",
|
||||||
"Pasted image 20250505084741.png",
|
"Pasted image 20250505084741.png",
|
||||||
|
@ -234,7 +234,6 @@
|
||||||
"Pasted image 20250430192526.png",
|
"Pasted image 20250430192526.png",
|
||||||
"Pasted image 20250430183304.png",
|
"Pasted image 20250430183304.png",
|
||||||
"Pasted image 20250430175412.png",
|
"Pasted image 20250430175412.png",
|
||||||
"Pasted image 20250430171336.png",
|
|
||||||
"Concurrent Systems/slides/class 13.pdf",
|
"Concurrent Systems/slides/class 13.pdf",
|
||||||
"Concurrent Systems/slides/class 14.pdf",
|
"Concurrent Systems/slides/class 14.pdf",
|
||||||
"Concurrent Systems/slides/class 12.pdf",
|
"Concurrent Systems/slides/class 12.pdf",
|
||||||
|
|
|
@ -45,3 +45,7 @@ To simplify the proof, let us modify the set of formulae by allowing conjunction
|
||||||
*Inductive step:* Let's assume the thesis for every tree of height at most h. Let h+1 be the height of $\phi$. Let's distinguish on the outmost operator in $\phi$
|
*Inductive step:* Let's assume the thesis for every tree of height at most h. Let h+1 be the height of $\phi$. Let's distinguish on the outmost operator in $\phi$
|
||||||

|

|
||||||

|

|
||||||
|
|
||||||
|
(<=) We prove that $$R \triangleq \{ (P, Q) : L(P)=L(Q) \}$$ is a simulation; this suffices, since the relation just defined is trivially symmetric (so is a bisimulation too).
|
||||||
|
|
||||||
|
Let $(P, Q) \in R$ and $$
|
Loading…
Add table
Add a link
Reference in a new issue