vault backup: 2025-01-12 21:43:10
This commit is contained in:
parent
8d1be3fedd
commit
660bc89ac8
3 changed files with 63 additions and 24 deletions
80
.obsidian/workspace.json
vendored
80
.obsidian/workspace.json
vendored
|
@ -3,9 +3,47 @@
|
||||||
"id": "9c5b007ab74924bc",
|
"id": "9c5b007ab74924bc",
|
||||||
"type": "split",
|
"type": "split",
|
||||||
"children": [
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "8826bf446da15cf7",
|
||||||
|
"type": "tabs",
|
||||||
|
"dimension": 50,
|
||||||
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "1fb39a1dfc7b5200",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Biometric Systems/notes/7. Face recognition 3D.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "7. Face recognition 3D"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "e91988d352ff807a",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "pdf",
|
||||||
|
"state": {
|
||||||
|
"file": "Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
|
||||||
|
"page": 7,
|
||||||
|
"left": 109,
|
||||||
|
"top": 563,
|
||||||
|
"zoom": 1.5
|
||||||
|
},
|
||||||
|
"icon": "lucide-file-text",
|
||||||
|
"title": "LEZIONE12_MULBIOMETRIC"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"id": "10d05f5ce47bfda2",
|
"id": "10d05f5ce47bfda2",
|
||||||
"type": "tabs",
|
"type": "tabs",
|
||||||
|
"dimension": 50,
|
||||||
"children": [
|
"children": [
|
||||||
{
|
{
|
||||||
"id": "a1bfc487c4cf997d",
|
"id": "a1bfc487c4cf997d",
|
||||||
|
@ -13,12 +51,12 @@
|
||||||
"state": {
|
"state": {
|
||||||
"type": "markdown",
|
"type": "markdown",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Foundation of data science/notes/9 XGBoost.md",
|
"file": "Biometric Systems/notes/7. Face recognition 3D.md",
|
||||||
"mode": "source",
|
"mode": "source",
|
||||||
"source": false
|
"source": false
|
||||||
},
|
},
|
||||||
"icon": "lucide-file",
|
"icon": "lucide-file",
|
||||||
"title": "9 XGBoost"
|
"title": "7. Face recognition 3D"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -66,7 +104,7 @@
|
||||||
"state": {
|
"state": {
|
||||||
"type": "search",
|
"type": "search",
|
||||||
"state": {
|
"state": {
|
||||||
"query": "train test",
|
"query": "distanza",
|
||||||
"matchingCase": false,
|
"matchingCase": false,
|
||||||
"explainSearch": false,
|
"explainSearch": false,
|
||||||
"collapseAll": false,
|
"collapseAll": false,
|
||||||
|
@ -205,29 +243,33 @@
|
||||||
"companion:Toggle completion": false
|
"companion:Toggle completion": false
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"active": "a1bfc487c4cf997d",
|
"active": "0d5325c0f9289cea",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
"Foundation of data science/slides/Traditional discriminative approaches.pdf",
|
"Biometric Systems/notes/13. Multi biometric.md",
|
||||||
|
"Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
|
||||||
|
"Biometric Systems/notes/8 Face anti spoofing.md",
|
||||||
|
"Biometric Systems/notes/11. Fingerprints.md",
|
||||||
|
"Biometric Systems/slides/LEZIONE11_Fingerprints.pdf",
|
||||||
|
"Autonomous Networking/notes/q&a.md",
|
||||||
|
"Biometric Systems/notes/12. Iris recognition.md",
|
||||||
|
"Biometric Systems/notes/9. Ear recognition.md",
|
||||||
|
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||||
|
"Biometric Systems/slides/LEZIONE7_Face recognition3D.pdf",
|
||||||
|
"Biometric Systems/notes/7. Face recognition 3D.md",
|
||||||
|
"Foundation of data science/slides/More on Neural Networks (1).pdf",
|
||||||
|
"Foundation of data science/slides/FDS_convnet_primer_new.pdf",
|
||||||
|
"Foundation of data science/slides/linear regression.pdf",
|
||||||
|
"Foundation of data science/slides/IP CV Basics.pdf",
|
||||||
|
"Foundation of data science/slides/FDS_linear_regression_w_notes.pdf",
|
||||||
|
"Foundation of data science/slides/FDS_convnet_primer_new 1.pdf",
|
||||||
"Foundation of data science/notes/9 XGBoost.md",
|
"Foundation of data science/notes/9 XGBoost.md",
|
||||||
"Foundation of data science/notes/Untitled.md",
|
"Foundation of data science/notes/Untitled.md",
|
||||||
"Untitled",
|
|
||||||
"Foundation of data science/notes/9 Gradient Boosting.md",
|
"Foundation of data science/notes/9 Gradient Boosting.md",
|
||||||
"Foundation of data science/notes/9 Random Forest.md",
|
"Foundation of data science/notes/9 Random Forest.md",
|
||||||
"Foundation of data science/notes/9 Decision tree.md",
|
"Foundation of data science/notes/9 Decision tree.md",
|
||||||
"Biometric Systems/slides/Riassunto_2021_2022.pdf",
|
|
||||||
"Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
|
|
||||||
"Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf",
|
|
||||||
"Biometric Systems/slides/LEZIONE11_Fingerprints.pdf",
|
|
||||||
"Biometric Systems/slides/LEZIONE6_Face recognition2D.pdf",
|
|
||||||
"Foundation of data science/slides/FDS_backprop_new.pdf",
|
|
||||||
"Foundation of data science/slides/FDS_backprop_new 1.pdf",
|
|
||||||
"Foundation of data science/notes/8 Variational Autoencoders.md",
|
"Foundation of data science/notes/8 Variational Autoencoders.md",
|
||||||
"Foundation of data science/slides/Variational Autoencoders.pdf",
|
|
||||||
"Foundation of data science/notes/7 Autoencoders.md",
|
"Foundation of data science/notes/7 Autoencoders.md",
|
||||||
"Biometric Systems/notes/2. Performance indexes.md",
|
"Biometric Systems/notes/2. Performance indexes.md",
|
||||||
"Biometric Systems/notes/8 Face anti spoofing.md",
|
|
||||||
"Biometric Systems/notes/13. Multi biometric.md",
|
|
||||||
"Biometric Systems/notes/11. Fingerprints.md",
|
|
||||||
"Biometric Systems/notes/3. Recognition Reliability.md",
|
"Biometric Systems/notes/3. Recognition Reliability.md",
|
||||||
"Biometric Systems/notes/6. Face recognition 2D.md",
|
"Biometric Systems/notes/6. Face recognition 2D.md",
|
||||||
"Biometric Systems/notes/4. Face detection.md",
|
"Biometric Systems/notes/4. Face detection.md",
|
||||||
|
@ -238,10 +280,6 @@
|
||||||
"Foundation of data science/notes/3.2 LLM generated from notes.md",
|
"Foundation of data science/notes/3.2 LLM generated from notes.md",
|
||||||
"Foundation of data science/notes/4 L1 and L2 normalization - Lasso and Ridge.md",
|
"Foundation of data science/notes/4 L1 and L2 normalization - Lasso and Ridge.md",
|
||||||
"Foundation of data science/notes/3.1 Multi Class Logistic Regression.md",
|
"Foundation of data science/notes/3.1 Multi Class Logistic Regression.md",
|
||||||
"Foundation of data science/notes/3 Logistic Regression.md",
|
|
||||||
"Foundation of data science/notes/2 Linear Regression.md",
|
|
||||||
"Foundation of data science/notes/9 K-Nearest Neighbors.md",
|
|
||||||
"Biometric Systems/notes/multi bio.md",
|
|
||||||
"Biometric Systems/images/Pasted image 20241228171617.png",
|
"Biometric Systems/images/Pasted image 20241228171617.png",
|
||||||
"Biometric Systems/images/Pasted image 20241228174722.png",
|
"Biometric Systems/images/Pasted image 20241228174722.png",
|
||||||
"Biometric Systems/images/Pasted image 20241217025904.png",
|
"Biometric Systems/images/Pasted image 20241217025904.png",
|
||||||
|
|
|
@ -113,7 +113,7 @@ The local orientation of the ridge line in the position [i, j] is defined as the
|
||||||
##### Frequency map
|
##### Frequency map
|
||||||
the frequency of the local ridge line $f_{xy}$ at the point $[x, y]$ is defined as the number of ridges per unit length along a hypothetical segment centered at $[x, y]$ and orthogonal to the orientation of the local ridge.
|
the frequency of the local ridge line $f_{xy}$ at the point $[x, y]$ is defined as the number of ridges per unit length along a hypothetical segment centered at $[x, y]$ and orthogonal to the orientation of the local ridge.
|
||||||
- by estimating the frequency in discrete locations arranged in a grid, we can compute a frequency image F:![[Pasted image 20241127225853.png]]
|
- by estimating the frequency in discrete locations arranged in a grid, we can compute a frequency image F:![[Pasted image 20241127225853.png]]
|
||||||
- a possible approach is to count the averaage number of pixels between consecutive peaks of gray levels along the direction orthogonal to the local orientation of the ridge line
|
- a possible approach is to count the average number of pixels between consecutive peaks of gray levels along the direction orthogonal to the local orientation of the ridge line
|
||||||
|
|
||||||
##### Singularities
|
##### Singularities
|
||||||
Most of approaches are based on directional map.
|
Most of approaches are based on directional map.
|
||||||
|
@ -161,7 +161,7 @@ Hybrid method based on comparison of minutiae texture: combines the representati
|
||||||
- rotation parameter is the average of rotation of all the individual pairs of corresponding minutiae
|
- rotation parameter is the average of rotation of all the individual pairs of corresponding minutiae
|
||||||
- translation parameters are calculable using spatial coordinates of the pair of reference minutiae which produced the best alignment
|
- translation parameters are calculable using spatial coordinates of the pair of reference minutiae which produced the best alignment
|
||||||
|
|
||||||
##### Masking and tesselation
|
##### Masking and tessellation
|
||||||
After masking the background, the images are normalized by building on them a grid that divides them into series of non-overlapping windows of the same size. Each window is normalized with reference to a constant mean and variance. Optimal size for 300 DPI is 30x30, as 30 pixel is the average distance inter-solco.
|
After masking the background, the images are normalized by building on them a grid that divides them into series of non-overlapping windows of the same size. Each window is normalized with reference to a constant mean and variance. Optimal size for 300 DPI is 30x30, as 30 pixel is the average distance inter-solco.
|
||||||
![[Pasted image 20241128000431.png]]
|
![[Pasted image 20241128000431.png]]
|
||||||
|
|
||||||
|
|
|
@ -96,7 +96,8 @@ si possono usare i landmark
|
||||||
2. allineando facce minimizzando la distanza tra punti corrispondenti
|
2. allineando facce minimizzando la distanza tra punti corrispondenti
|
||||||
|
|
||||||
##### Fine
|
##### Fine
|
||||||
Algoritmo ICP
|
Algoritmo ICP (Iterative Closest Point)
|
||||||
|
https://www.youtube.com/watch?v=QWDM4cFdKrE
|
||||||
Date due superfici 3D
|
Date due superfici 3D
|
||||||
1. trova un iniziale match tra le due (mapping di punti/superfici/linee/curve)
|
1. trova un iniziale match tra le due (mapping di punti/superfici/linee/curve)
|
||||||
2. calcola la distanza tra le superfici con il metodo least squares
|
2. calcola la distanza tra le superfici con il metodo least squares
|
||||||
|
|
Loading…
Reference in a new issue