vault backup: 2025-01-12 21:43:10

This commit is contained in:
Marco Realacci 2025-01-12 21:43:10 +01:00
parent 8d1be3fedd
commit 660bc89ac8
3 changed files with 63 additions and 24 deletions

View file

@ -3,9 +3,47 @@
"id": "9c5b007ab74924bc",
"type": "split",
"children": [
{
"id": "8826bf446da15cf7",
"type": "tabs",
"dimension": 50,
"children": [
{
"id": "1fb39a1dfc7b5200",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "Biometric Systems/notes/7. Face recognition 3D.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "7. Face recognition 3D"
}
},
{
"id": "e91988d352ff807a",
"type": "leaf",
"state": {
"type": "pdf",
"state": {
"file": "Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
"page": 7,
"left": 109,
"top": 563,
"zoom": 1.5
},
"icon": "lucide-file-text",
"title": "LEZIONE12_MULBIOMETRIC"
}
}
]
},
{
"id": "10d05f5ce47bfda2",
"type": "tabs",
"dimension": 50,
"children": [
{
"id": "a1bfc487c4cf997d",
@ -13,12 +51,12 @@
"state": {
"type": "markdown",
"state": {
"file": "Foundation of data science/notes/9 XGBoost.md",
"file": "Biometric Systems/notes/7. Face recognition 3D.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "9 XGBoost"
"title": "7. Face recognition 3D"
}
},
{
@ -66,7 +104,7 @@
"state": {
"type": "search",
"state": {
"query": "train test",
"query": "distanza",
"matchingCase": false,
"explainSearch": false,
"collapseAll": false,
@ -205,29 +243,33 @@
"companion:Toggle completion": false
}
},
"active": "a1bfc487c4cf997d",
"active": "0d5325c0f9289cea",
"lastOpenFiles": [
"Foundation of data science/slides/Traditional discriminative approaches.pdf",
"Biometric Systems/notes/13. Multi biometric.md",
"Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
"Biometric Systems/notes/8 Face anti spoofing.md",
"Biometric Systems/notes/11. Fingerprints.md",
"Biometric Systems/slides/LEZIONE11_Fingerprints.pdf",
"Autonomous Networking/notes/q&a.md",
"Biometric Systems/notes/12. Iris recognition.md",
"Biometric Systems/notes/9. Ear recognition.md",
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
"Biometric Systems/slides/LEZIONE7_Face recognition3D.pdf",
"Biometric Systems/notes/7. Face recognition 3D.md",
"Foundation of data science/slides/More on Neural Networks (1).pdf",
"Foundation of data science/slides/FDS_convnet_primer_new.pdf",
"Foundation of data science/slides/linear regression.pdf",
"Foundation of data science/slides/IP CV Basics.pdf",
"Foundation of data science/slides/FDS_linear_regression_w_notes.pdf",
"Foundation of data science/slides/FDS_convnet_primer_new 1.pdf",
"Foundation of data science/notes/9 XGBoost.md",
"Foundation of data science/notes/Untitled.md",
"Untitled",
"Foundation of data science/notes/9 Gradient Boosting.md",
"Foundation of data science/notes/9 Random Forest.md",
"Foundation of data science/notes/9 Decision tree.md",
"Biometric Systems/slides/Riassunto_2021_2022.pdf",
"Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
"Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf",
"Biometric Systems/slides/LEZIONE11_Fingerprints.pdf",
"Biometric Systems/slides/LEZIONE6_Face recognition2D.pdf",
"Foundation of data science/slides/FDS_backprop_new.pdf",
"Foundation of data science/slides/FDS_backprop_new 1.pdf",
"Foundation of data science/notes/8 Variational Autoencoders.md",
"Foundation of data science/slides/Variational Autoencoders.pdf",
"Foundation of data science/notes/7 Autoencoders.md",
"Biometric Systems/notes/2. Performance indexes.md",
"Biometric Systems/notes/8 Face anti spoofing.md",
"Biometric Systems/notes/13. Multi biometric.md",
"Biometric Systems/notes/11. Fingerprints.md",
"Biometric Systems/notes/3. Recognition Reliability.md",
"Biometric Systems/notes/6. Face recognition 2D.md",
"Biometric Systems/notes/4. Face detection.md",
@ -238,10 +280,6 @@
"Foundation of data science/notes/3.2 LLM generated from notes.md",
"Foundation of data science/notes/4 L1 and L2 normalization - Lasso and Ridge.md",
"Foundation of data science/notes/3.1 Multi Class Logistic Regression.md",
"Foundation of data science/notes/3 Logistic Regression.md",
"Foundation of data science/notes/2 Linear Regression.md",
"Foundation of data science/notes/9 K-Nearest Neighbors.md",
"Biometric Systems/notes/multi bio.md",
"Biometric Systems/images/Pasted image 20241228171617.png",
"Biometric Systems/images/Pasted image 20241228174722.png",
"Biometric Systems/images/Pasted image 20241217025904.png",

View file

@ -113,7 +113,7 @@ The local orientation of the ridge line in the position [i, j] is defined as the
##### Frequency map
the frequency of the local ridge line $f_{xy}$ at the point $[x, y]$ is defined as the number of ridges per unit length along a hypothetical segment centered at $[x, y]$ and orthogonal to the orientation of the local ridge.
- by estimating the frequency in discrete locations arranged in a grid, we can compute a frequency image F:![[Pasted image 20241127225853.png]]
- a possible approach is to count the averaage number of pixels between consecutive peaks of gray levels along the direction orthogonal to the local orientation of the ridge line
- a possible approach is to count the average number of pixels between consecutive peaks of gray levels along the direction orthogonal to the local orientation of the ridge line
##### Singularities
Most of approaches are based on directional map.
@ -161,7 +161,7 @@ Hybrid method based on comparison of minutiae texture: combines the representati
- rotation parameter is the average of rotation of all the individual pairs of corresponding minutiae
- translation parameters are calculable using spatial coordinates of the pair of reference minutiae which produced the best alignment
##### Masking and tesselation
##### Masking and tessellation
After masking the background, the images are normalized by building on them a grid that divides them into series of non-overlapping windows of the same size. Each window is normalized with reference to a constant mean and variance. Optimal size for 300 DPI is 30x30, as 30 pixel is the average distance inter-solco.
![[Pasted image 20241128000431.png]]

View file

@ -96,7 +96,8 @@ si possono usare i landmark
2. allineando facce minimizzando la distanza tra punti corrispondenti
##### Fine
Algoritmo ICP
Algoritmo ICP (Iterative Closest Point)
https://www.youtube.com/watch?v=QWDM4cFdKrE
Date due superfici 3D
1. trova un iniziale match tra le due (mapping di punti/superfici/linee/curve)
2. calcola la distanza tra le superfici con il metodo least squares