vault backup: 2024-10-02 10:05:56

This commit is contained in:
Marco Realacci 2024-10-02 10:05:56 +02:00
parent 0c6db8f9f4
commit 718db61a49
9 changed files with 16442 additions and 57 deletions

View file

@ -1,5 +1,6 @@
[ [
"obsidian-ocr", "obsidian-ocr",
"pdf-plus", "pdf-plus",
"obsidian-git" "obsidian-git",
"mathlive-in-editor-mode"
] ]

View file

@ -0,0 +1,9 @@
{
"display": false,
"blockDisplay": false,
"blockMenuIcon": false,
"blockKeyboardIcon": false,
"inlineDisplay": false,
"inlineMenuIcon": false,
"inlineKeyboardIcon": false
}

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,10 @@
{
"id": "mathlive-in-editor-mode",
"name": "MathLive in Editor Mode",
"version": "0.1.7",
"minAppVersion": "1.5.12",
"description": "MathLive input in editor mode",
"author": "MizarZh",
"authorUrl": "https://github.com/MizarZh",
"isDesktopOnly": false
}

File diff suppressed because one or more lines are too long

View file

@ -1,40 +1,21 @@
{ {
"main": { "main": {
"id": "9c5b007ab74924bc", "id": "457b1626aad25933",
"type": "split", "type": "split",
"children": [ "children": [
{ {
"id": "7836cf4d439bcdf6", "id": "a4a0be807e701f64",
"type": "tabs", "type": "tabs",
"children": [ "children": [
{ {
"id": "1d85c224683321ec", "id": "1391874bd127fece",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "pdf", "type": "markdown",
"state": { "state": {
"file": "Biometric Systems/slides/LEZIONE1_Introduzione.pdf", "file": "Foundation of data science/slides/Untitled.md",
"page": 32, "mode": "source",
"left": -24, "source": false
"top": 6,
"zoom": 0.615625
}
}
}
]
},
{
"id": "75aa4113d18475de",
"type": "tabs",
"children": [
{
"id": "97d6e45de66358f9",
"type": "leaf",
"state": {
"type": "diff-view",
"state": {
"file": ".obsidian/workspace.json",
"staged": false
} }
} }
} }
@ -44,15 +25,15 @@
"direction": "vertical" "direction": "vertical"
}, },
"left": { "left": {
"id": "e2078ffa3de56c07", "id": "6a3cb9001ef6ba4d",
"type": "split", "type": "split",
"children": [ "children": [
{ {
"id": "d86cb8d8115f9e4b", "id": "c0a60ed96ba06609",
"type": "tabs", "type": "tabs",
"children": [ "children": [
{ {
"id": "2b2245f56092006e", "id": "5d5551c2fd0314c8",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "file-explorer", "type": "file-explorer",
@ -62,7 +43,7 @@
} }
}, },
{ {
"id": "954699747dc12b5e", "id": "a4bcc1c786569338",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "search", "type": "search",
@ -77,7 +58,7 @@
} }
}, },
{ {
"id": "71e92c2ed6f6f21c", "id": "2dfc44e60fc51bbe",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "bookmarks", "type": "bookmarks",
@ -91,19 +72,20 @@
"width": 300 "width": 300
}, },
"right": { "right": {
"id": "bc4b945ded1926e3", "id": "11560c155f3d8f6e",
"type": "split", "type": "split",
"children": [ "children": [
{ {
"id": "00a3201508c9b6f7", "id": "95208597e1d680ae",
"type": "tabs", "type": "tabs",
"children": [ "children": [
{ {
"id": "34cc5dc90419b254", "id": "3c35a40edfa1f381",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "backlink", "type": "backlink",
"state": { "state": {
"file": "Foundation of data science/slides/Untitled.md",
"collapseAll": false, "collapseAll": false,
"extraContext": false, "extraContext": false,
"sortOrder": "alphabetical", "sortOrder": "alphabetical",
@ -115,18 +97,19 @@
} }
}, },
{ {
"id": "f4a0915b879a43cd", "id": "926b8cdb0ccf5242",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "outgoing-link", "type": "outgoing-link",
"state": { "state": {
"file": "Foundation of data science/slides/Untitled.md",
"linksCollapsed": false, "linksCollapsed": false,
"unlinkedCollapsed": true "unlinkedCollapsed": true
} }
} }
}, },
{ {
"id": "c12ba700d0604b95", "id": "9fbde0b1f6b76a5d",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "tag", "type": "tag",
@ -137,15 +120,17 @@
} }
}, },
{ {
"id": "77997770a5699d72", "id": "7745bbb89c3a5344",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "outline", "type": "outline",
"state": {} "state": {
"file": "Foundation of data science/slides/Untitled.md"
}
} }
}, },
{ {
"id": "0d5325c0f9289cea", "id": "b5d8a3515919e28a",
"type": "leaf", "type": "leaf",
"state": { "state": {
"type": "git-view", "type": "git-view",
@ -157,40 +142,42 @@
} }
], ],
"direction": "horizontal", "direction": "horizontal",
"width": 289.5 "width": 300
}, },
"left-ribbon": { "left-ribbon": {
"hiddenItems": { "hiddenItems": {
"switcher:Apri selezione rapida": false,
"graph:Apri vista grafo": false,
"canvas:Crea nuova lavagna": false,
"daily-notes:Apri nota del giorno": false,
"templates:Inserisci modello": false,
"command-palette:Apri riquadro comandi": false,
"obsidian-ocr:Search OCR": false, "obsidian-ocr:Search OCR": false,
"switcher:Open quick switcher": false,
"graph:Open graph view": false,
"canvas:Create new canvas": false,
"daily-notes:Open today's daily note": false,
"templates:Insert template": false,
"command-palette:Open command palette": false,
"pdf-plus:PDF++: Toggle auto-copy": false, "pdf-plus:PDF++: Toggle auto-copy": false,
"pdf-plus:PDF++: Toggle auto-focus": false, "pdf-plus:PDF++: Toggle auto-focus": false,
"pdf-plus:PDF++: Toggle auto-paste": false, "pdf-plus:PDF++: Toggle auto-paste": false,
"obsidian-git:Open Git source control": false "obsidian-git:Open Git source control": false
} }
}, },
"active": "97d6e45de66358f9", "active": "5d5551c2fd0314c8",
"lastOpenFiles": [ "lastOpenFiles": [
"Foundation of data science/slides/notes 2.md",
"Foundation of data science/slides/Untitled.md",
"Foundation of data science/slides/FDS_intro_new.pdf",
"Biometric Systems/final notes/1. Introduction.md", "Biometric Systems/final notes/1. Introduction.md",
"Foundation of data science/slides",
"Foundation of data science",
"LICENSE", "LICENSE",
"Biometric Systems/slides/LEZIONE1_Introduzione.pdf",
"Biometric Systems/slides/lezione1 notes.md", "Biometric Systems/slides/lezione1 notes.md",
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
"Biometric Systems/slides/LEZIONE1_Introduzione.pdf",
"Biometric Systems/images/architecture - recognition.png", "Biometric Systems/images/architecture - recognition.png",
"Biometric Systems/images/architecture - enrollment.png", "Biometric Systems/images/architecture - enrollment.png",
"Biometric Systems/images",
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
"prova per obsidian.md",
"Biometric Systems/final notes",
"Biometric Systems/slides", "Biometric Systems/slides",
"Biometric Systems/images",
"Biometric Systems/final notes",
"Biometric Systems", "Biometric Systems",
"Senza nome.canvas", "Untitled.canvas",
"bachelor_presentation-1.pdf", "Untitled.md"
"bachelor_presentation-1 2.pdf",
"bachelor_presentation-1 1.pdf"
] ]
} }

Binary file not shown.

View file

@ -0,0 +1,12 @@
$$f[[m,n]+[m^{\prime},n^{\prime}]]=f\left\lbrack m+m^{\prime},n+n^{\prime}\right\rbrack=f\left\lbrack m,n\right\rbrack+f\left\lbrack m^{\prime},n^{\prime}\right\rbrack
$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[m-k,n-l]g[k,l]}+\sum_{k,l}{I[m'-k,n'-l]g[k,l]}$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[m-k,n-l]g[k,l] + I[m'-k,n'-l]g[k,l]}$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{(I[m-k,n-l] + I[m'-k,n'-l])g[k,l]}$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}$$

View file

@ -0,0 +1,47 @@
#### Object recognition
Different types of recognition
- object identification
- object classification
##### Which level is right for Object Classes?
- Basic-Level Categories
###### Challenges
- multi-view: different view points
- multi-class: different types of the same object (different car models)
- varying illumination
- ecc
### Filtering basics
- Linear filtering
- Gaussian filtering
- Multi scale image representation
- gaussian pyramid
- edge detection
- recognition using line drawings
- image derivatives (1st and 2nd order)
- object instance identification using color histograms
- performing evaluation
probabilità dadi
$Px(5) = 1/6$
$Py(5) = 1/6$
$Px+y(5) = ?$
We can count the possible cases
total cases: $6*6=36$
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| --- | --- | --- | --- | --- | --- | --- |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| | 1 | 2 | 3 | 4 | 5 | 6 |
possible cases: $P(3)P(1)+P(2)P(2)+P(1)P(3)$
$P[x*y](S) = $