vault backup: 2024-10-02 10:05:56
This commit is contained in:
parent
0c6db8f9f4
commit
718db61a49
9 changed files with 16442 additions and 57 deletions
3
.obsidian/community-plugins.json
vendored
3
.obsidian/community-plugins.json
vendored
|
@ -1,5 +1,6 @@
|
|||
[
|
||||
"obsidian-ocr",
|
||||
"pdf-plus",
|
||||
"obsidian-git"
|
||||
"obsidian-git",
|
||||
"mathlive-in-editor-mode"
|
||||
]
|
9
.obsidian/plugins/mathlive-in-editor-mode/data.json
vendored
Normal file
9
.obsidian/plugins/mathlive-in-editor-mode/data.json
vendored
Normal file
|
@ -0,0 +1,9 @@
|
|||
{
|
||||
"display": false,
|
||||
"blockDisplay": false,
|
||||
"blockMenuIcon": false,
|
||||
"blockKeyboardIcon": false,
|
||||
"inlineDisplay": false,
|
||||
"inlineMenuIcon": false,
|
||||
"inlineKeyboardIcon": false
|
||||
}
|
16116
.obsidian/plugins/mathlive-in-editor-mode/main.js
vendored
Normal file
16116
.obsidian/plugins/mathlive-in-editor-mode/main.js
vendored
Normal file
File diff suppressed because one or more lines are too long
10
.obsidian/plugins/mathlive-in-editor-mode/manifest.json
vendored
Normal file
10
.obsidian/plugins/mathlive-in-editor-mode/manifest.json
vendored
Normal file
|
@ -0,0 +1,10 @@
|
|||
{
|
||||
"id": "mathlive-in-editor-mode",
|
||||
"name": "MathLive in Editor Mode",
|
||||
"version": "0.1.7",
|
||||
"minAppVersion": "1.5.12",
|
||||
"description": "MathLive input in editor mode",
|
||||
"author": "MizarZh",
|
||||
"authorUrl": "https://github.com/MizarZh",
|
||||
"isDesktopOnly": false
|
||||
}
|
203
.obsidian/plugins/mathlive-in-editor-mode/styles.css
vendored
Normal file
203
.obsidian/plugins/mathlive-in-editor-mode/styles.css
vendored
Normal file
File diff suppressed because one or more lines are too long
99
.obsidian/workspace.json
vendored
99
.obsidian/workspace.json
vendored
|
@ -1,40 +1,21 @@
|
|||
{
|
||||
"main": {
|
||||
"id": "9c5b007ab74924bc",
|
||||
"id": "457b1626aad25933",
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "7836cf4d439bcdf6",
|
||||
"id": "a4a0be807e701f64",
|
||||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "1d85c224683321ec",
|
||||
"id": "1391874bd127fece",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "pdf",
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "Biometric Systems/slides/LEZIONE1_Introduzione.pdf",
|
||||
"page": 32,
|
||||
"left": -24,
|
||||
"top": 6,
|
||||
"zoom": 0.615625
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "75aa4113d18475de",
|
||||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "97d6e45de66358f9",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "diff-view",
|
||||
"state": {
|
||||
"file": ".obsidian/workspace.json",
|
||||
"staged": false
|
||||
"file": "Foundation of data science/slides/Untitled.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -44,15 +25,15 @@
|
|||
"direction": "vertical"
|
||||
},
|
||||
"left": {
|
||||
"id": "e2078ffa3de56c07",
|
||||
"id": "6a3cb9001ef6ba4d",
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "d86cb8d8115f9e4b",
|
||||
"id": "c0a60ed96ba06609",
|
||||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "2b2245f56092006e",
|
||||
"id": "5d5551c2fd0314c8",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "file-explorer",
|
||||
|
@ -62,7 +43,7 @@
|
|||
}
|
||||
},
|
||||
{
|
||||
"id": "954699747dc12b5e",
|
||||
"id": "a4bcc1c786569338",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "search",
|
||||
|
@ -77,7 +58,7 @@
|
|||
}
|
||||
},
|
||||
{
|
||||
"id": "71e92c2ed6f6f21c",
|
||||
"id": "2dfc44e60fc51bbe",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "bookmarks",
|
||||
|
@ -91,19 +72,20 @@
|
|||
"width": 300
|
||||
},
|
||||
"right": {
|
||||
"id": "bc4b945ded1926e3",
|
||||
"id": "11560c155f3d8f6e",
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "00a3201508c9b6f7",
|
||||
"id": "95208597e1d680ae",
|
||||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "34cc5dc90419b254",
|
||||
"id": "3c35a40edfa1f381",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "backlink",
|
||||
"state": {
|
||||
"file": "Foundation of data science/slides/Untitled.md",
|
||||
"collapseAll": false,
|
||||
"extraContext": false,
|
||||
"sortOrder": "alphabetical",
|
||||
|
@ -115,18 +97,19 @@
|
|||
}
|
||||
},
|
||||
{
|
||||
"id": "f4a0915b879a43cd",
|
||||
"id": "926b8cdb0ccf5242",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "outgoing-link",
|
||||
"state": {
|
||||
"file": "Foundation of data science/slides/Untitled.md",
|
||||
"linksCollapsed": false,
|
||||
"unlinkedCollapsed": true
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "c12ba700d0604b95",
|
||||
"id": "9fbde0b1f6b76a5d",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "tag",
|
||||
|
@ -137,15 +120,17 @@
|
|||
}
|
||||
},
|
||||
{
|
||||
"id": "77997770a5699d72",
|
||||
"id": "7745bbb89c3a5344",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "outline",
|
||||
"state": {}
|
||||
"state": {
|
||||
"file": "Foundation of data science/slides/Untitled.md"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "0d5325c0f9289cea",
|
||||
"id": "b5d8a3515919e28a",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "git-view",
|
||||
|
@ -157,40 +142,42 @@
|
|||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 289.5
|
||||
"width": 300
|
||||
},
|
||||
"left-ribbon": {
|
||||
"hiddenItems": {
|
||||
"switcher:Apri selezione rapida": false,
|
||||
"graph:Apri vista grafo": false,
|
||||
"canvas:Crea nuova lavagna": false,
|
||||
"daily-notes:Apri nota del giorno": false,
|
||||
"templates:Inserisci modello": false,
|
||||
"command-palette:Apri riquadro comandi": false,
|
||||
"obsidian-ocr:Search OCR": false,
|
||||
"switcher:Open quick switcher": false,
|
||||
"graph:Open graph view": false,
|
||||
"canvas:Create new canvas": false,
|
||||
"daily-notes:Open today's daily note": false,
|
||||
"templates:Insert template": false,
|
||||
"command-palette:Open command palette": false,
|
||||
"pdf-plus:PDF++: Toggle auto-copy": false,
|
||||
"pdf-plus:PDF++: Toggle auto-focus": false,
|
||||
"pdf-plus:PDF++: Toggle auto-paste": false,
|
||||
"obsidian-git:Open Git source control": false
|
||||
}
|
||||
},
|
||||
"active": "97d6e45de66358f9",
|
||||
"active": "5d5551c2fd0314c8",
|
||||
"lastOpenFiles": [
|
||||
"Foundation of data science/slides/notes 2.md",
|
||||
"Foundation of data science/slides/Untitled.md",
|
||||
"Foundation of data science/slides/FDS_intro_new.pdf",
|
||||
"Biometric Systems/final notes/1. Introduction.md",
|
||||
"Foundation of data science/slides",
|
||||
"Foundation of data science",
|
||||
"LICENSE",
|
||||
"Biometric Systems/slides/LEZIONE1_Introduzione.pdf",
|
||||
"Biometric Systems/slides/lezione1 notes.md",
|
||||
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||
"Biometric Systems/slides/LEZIONE1_Introduzione.pdf",
|
||||
"Biometric Systems/images/architecture - recognition.png",
|
||||
"Biometric Systems/images/architecture - enrollment.png",
|
||||
"Biometric Systems/images",
|
||||
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||
"prova per obsidian.md",
|
||||
"Biometric Systems/final notes",
|
||||
"Biometric Systems/slides",
|
||||
"Biometric Systems/images",
|
||||
"Biometric Systems/final notes",
|
||||
"Biometric Systems",
|
||||
"Senza nome.canvas",
|
||||
"bachelor_presentation-1.pdf",
|
||||
"bachelor_presentation-1 2.pdf",
|
||||
"bachelor_presentation-1 1.pdf"
|
||||
"Untitled.canvas",
|
||||
"Untitled.md"
|
||||
]
|
||||
}
|
BIN
Foundation of data science/slides/FDS_intro_new.pdf
Normal file
BIN
Foundation of data science/slides/FDS_intro_new.pdf
Normal file
Binary file not shown.
12
Foundation of data science/slides/Untitled.md
Normal file
12
Foundation of data science/slides/Untitled.md
Normal file
|
@ -0,0 +1,12 @@
|
|||
$$f[[m,n]+[m^{\prime},n^{\prime}]]=f\left\lbrack m+m^{\prime},n+n^{\prime}\right\rbrack=f\left\lbrack m,n\right\rbrack+f\left\lbrack m^{\prime},n^{\prime}\right\rbrack
|
||||
|
||||
|
||||
$$
|
||||
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[m-k,n-l]g[k,l]}+\sum_{k,l}{I[m'-k,n'-l]g[k,l]}$$
|
||||
|
||||
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[m-k,n-l]g[k,l] + I[m'-k,n'-l]g[k,l]}$$
|
||||
|
||||
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{(I[m-k,n-l] + I[m'-k,n'-l])g[k,l]}$$
|
||||
|
||||
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}$$
|
||||
|
47
Foundation of data science/slides/notes 2.md
Normal file
47
Foundation of data science/slides/notes 2.md
Normal file
|
@ -0,0 +1,47 @@
|
|||
#### Object recognition
|
||||
Different types of recognition
|
||||
- object identification
|
||||
- object classification
|
||||
|
||||
##### Which level is right for Object Classes?
|
||||
- Basic-Level Categories
|
||||
|
||||
###### Challenges
|
||||
- multi-view: different view points
|
||||
- multi-class: different types of the same object (different car models)
|
||||
- varying illumination
|
||||
- ecc
|
||||
|
||||
### Filtering basics
|
||||
- Linear filtering
|
||||
- Gaussian filtering
|
||||
- Multi scale image representation
|
||||
- gaussian pyramid
|
||||
- edge detection
|
||||
- recognition using line drawings
|
||||
- image derivatives (1st and 2nd order)
|
||||
- object instance identification using color histograms
|
||||
- performing evaluation
|
||||
|
||||
probabilità dadi
|
||||
$Px(5) = 1/6$
|
||||
$Py(5) = 1/6$
|
||||
$Px+y(5) = ?$
|
||||
|
||||
We can count the possible cases
|
||||
total cases: $6*6=36$
|
||||
|
||||
|
||||
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|
||||
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|
||||
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|
||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|
||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
||||
| | 1 | 2 | 3 | 4 | 5 | 6 |
|
||||
|
||||
possible cases: $P(3)P(1)+P(2)P(2)+P(1)P(3)$
|
||||
|
||||
|
||||
$P[x*y](S) = $
|
Loading…
Reference in a new issue