vault backup: 2024-12-16 02:05:42
106
.obsidian/workspace.json
vendored
|
@ -6,65 +6,57 @@
|
||||||
{
|
{
|
||||||
"id": "10d05f5ce47bfda2",
|
"id": "10d05f5ce47bfda2",
|
||||||
"type": "tabs",
|
"type": "tabs",
|
||||||
|
"dimension": 50.1269035532995,
|
||||||
"children": [
|
"children": [
|
||||||
{
|
{
|
||||||
"id": "ea6218ee2cf2648c",
|
"id": "0b84e8ee40a319b0",
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "markdown",
|
"type": "image",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Biometric Systems/notes/12. Iris recognition.md",
|
"file": "Biometric Systems/images/Pasted image 20241212094046.png"
|
||||||
"mode": "source",
|
|
||||||
"source": false
|
|
||||||
},
|
},
|
||||||
"icon": "lucide-file",
|
"icon": "lucide-image",
|
||||||
"title": "12. Iris recognition"
|
"title": "Pasted image 20241212094046"
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "21a17cfbfa598cda",
|
"id": "2d6c0c860f9d3654",
|
||||||
"type": "leaf",
|
"type": "tabs",
|
||||||
"state": {
|
"dimension": 49.87309644670051,
|
||||||
"type": "markdown",
|
"children": [
|
||||||
"state": {
|
|
||||||
"file": "Biometric Systems/notes/3. Recognition Reliability.md",
|
|
||||||
"mode": "source",
|
|
||||||
"source": false
|
|
||||||
},
|
|
||||||
"icon": "lucide-file",
|
|
||||||
"title": "3. Recognition Reliability"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"id": "5708c825977190cc",
|
"id": "5708c825977190cc",
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "pdf",
|
"type": "pdf",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
|
"file": "Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
|
||||||
"page": 40,
|
"page": 8,
|
||||||
"left": -20,
|
"left": -3,
|
||||||
"top": 349,
|
"top": 110,
|
||||||
"zoom": 0.7666666666666667
|
"zoom": 0.88
|
||||||
},
|
},
|
||||||
"icon": "lucide-file-text",
|
"icon": "lucide-file-text",
|
||||||
"title": "LEZIONE3_Affidabilita_del_riconoscimento"
|
"title": "LEZIONE12_MULBIOMETRIC"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "306ad865c4d76e63",
|
"id": "ddcbcd954092c261",
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "pdf",
|
"type": "pdf",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Biometric Systems/slides/LEZIONE10_Iris recognition.pdf",
|
"file": "Biometric Systems/slides/Biometric_System___Notes.pdf",
|
||||||
"page": 33,
|
"page": 4,
|
||||||
"left": -4,
|
"left": -25,
|
||||||
"top": 44,
|
"top": 725,
|
||||||
"zoom": 0.8
|
"zoom": 0.6078431372549019
|
||||||
},
|
},
|
||||||
"icon": "lucide-file-text",
|
"icon": "lucide-file-text",
|
||||||
"title": "LEZIONE10_Iris recognition"
|
"title": "Biometric_System___Notes"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -75,7 +67,7 @@
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Biometric Systems/slides/Riassunto_2021_2022.pdf",
|
"file": "Biometric Systems/slides/Riassunto_2021_2022.pdf",
|
||||||
"page": 1,
|
"page": 1,
|
||||||
"left": -154,
|
"left": -4,
|
||||||
"top": 846,
|
"top": 846,
|
||||||
"zoom": 0.9
|
"zoom": 0.9
|
||||||
},
|
},
|
||||||
|
@ -83,8 +75,7 @@
|
||||||
"title": "Riassunto_2021_2022"
|
"title": "Riassunto_2021_2022"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
],
|
]
|
||||||
"currentTab": 3
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"direction": "vertical"
|
"direction": "vertical"
|
||||||
|
@ -254,23 +245,36 @@
|
||||||
"companion:Toggle completion": false
|
"companion:Toggle completion": false
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"active": "306ad865c4d76e63",
|
"active": "0d5325c0f9289cea",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
"Biometric Systems/slides/Biometric_System___Notes.pdf",
|
"Biometric Systems/images/Pasted image 20241212094016.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212093900.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212084349.png",
|
||||||
|
"Biometric Systems/notes/13. Multi biometric.md",
|
||||||
|
"Biometric Systems/notes/multi bio.md",
|
||||||
"Biometric Systems/slides/Riassunto_2021_2022.pdf",
|
"Biometric Systems/slides/Riassunto_2021_2022.pdf",
|
||||||
"Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
|
"Biometric Systems/notes/6. Face recognition 2D.md",
|
||||||
|
"Biometric Systems/notes/4. Face detection.md",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212094046.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212094000.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212093943.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212093927.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212093902.png",
|
||||||
|
"Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212091320.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212090608.png",
|
||||||
|
"Biometric Systems/notes/12. Iris recognition.md",
|
||||||
|
"Biometric Systems/images/Pasted image 20241212085003.png",
|
||||||
|
"Biometric Systems/slides/Biometric_System___Notes.pdf",
|
||||||
"Biometric Systems/notes/3. Recognition Reliability.md",
|
"Biometric Systems/notes/3. Recognition Reliability.md",
|
||||||
|
"Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
|
||||||
|
"Biometric Systems/slides/LEZIONE10_Iris recognition.pdf",
|
||||||
|
"Biometric Systems/slides/lezione1 notes.md",
|
||||||
"Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf",
|
"Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf",
|
||||||
"Biometric Systems/slides/LEZIONE5_NEW_More about face localization.pdf",
|
"Biometric Systems/slides/LEZIONE5_NEW_More about face localization.pdf",
|
||||||
"Biometric Systems/slides/LEZIONE1_Introduzione.pdf",
|
"Biometric Systems/slides/LEZIONE1_Introduzione.pdf",
|
||||||
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||||
"Biometric Systems/slides/LEZIONE10_Iris recognition.pdf",
|
|
||||||
"Biometric Systems/notes/12. Iris recognition.md",
|
|
||||||
"Biometric Systems/notes/1. Introduction.md",
|
"Biometric Systems/notes/1. Introduction.md",
|
||||||
"Foundation of data science/images/Pasted image 20241208143835.png",
|
|
||||||
"Foundation of data science/images/Pasted image 20241208151418.png",
|
|
||||||
"Foundation of data science/images/Pasted image 20241208151358.png",
|
|
||||||
"Foundation of data science/images/Pasted image 20241208143917.png",
|
|
||||||
"Foundation of data science/notes/2 Logistic Regression.md",
|
"Foundation of data science/notes/2 Logistic Regression.md",
|
||||||
"Foundation of data science/notes/1 CV Basics.md",
|
"Foundation of data science/notes/1 CV Basics.md",
|
||||||
"Foundation of data science/notes/3 Multi Class Binary Classification.md",
|
"Foundation of data science/notes/3 Multi Class Binary Classification.md",
|
||||||
|
@ -283,24 +287,12 @@
|
||||||
"Foundation of data science/notes/9 Random Forest.md",
|
"Foundation of data science/notes/9 Random Forest.md",
|
||||||
"Biometric Systems/notes/2. Performance indexes.md",
|
"Biometric Systems/notes/2. Performance indexes.md",
|
||||||
"Biometric Systems/notes/dati da considerare.md",
|
"Biometric Systems/notes/dati da considerare.md",
|
||||||
"Biometric Systems/slides/lezione1 notes.md",
|
|
||||||
"Foundation of data science/slides/more on nn.pdf",
|
"Foundation of data science/slides/more on nn.pdf",
|
||||||
"Pasted image 20241208151757.png",
|
|
||||||
"Foundation of data science/images/Pasted image 20241208150705.png",
|
|
||||||
"Foundation of data science/images/Pasted image 20241208144009.png",
|
|
||||||
"Foundation of data science/notes/Untitled.md",
|
"Foundation of data science/notes/Untitled.md",
|
||||||
"Foundation of data science/notes/4 L1 and L2 normalization.md",
|
"Foundation of data science/notes/4 L1 and L2 normalization.md",
|
||||||
"Autonomous Networking/notes/5 Drones.md",
|
"Autonomous Networking/notes/5 Drones.md",
|
||||||
"Autonomous Networking/notes/6 Internet of Things.md",
|
"Autonomous Networking/notes/6 Internet of Things.md",
|
||||||
"Autonomous Networking/notes/3 WSN MAC.md",
|
"Autonomous Networking/notes/3 WSN MAC.md",
|
||||||
"Autonomous Networking/notes/4 WSN Routing.md",
|
|
||||||
"Biometric Systems/notes/11. Fingerprints.md",
|
|
||||||
"Biometric Systems/notes/9. Ear recognition.md",
|
|
||||||
"Biometric Systems/notes/8 Face anti spoofing.md",
|
|
||||||
"Foundation of data science/images/Pasted image 20241203130242.png",
|
|
||||||
"Foundation of data science/images/Pasted image 20241129142615.png",
|
|
||||||
"Foundation of data science/images/Pasted image 20241129150144.png",
|
|
||||||
"Biometric Systems/slides/LEZIONE11_Fingerprints.pdf",
|
|
||||||
"Senza nome.canvas"
|
"Senza nome.canvas"
|
||||||
]
|
]
|
||||||
}
|
}
|
BIN
Biometric Systems/images/Pasted image 20241212084256.png
Normal file
After Width: | Height: | Size: 94 KiB |
BIN
Biometric Systems/images/Pasted image 20241212084349.png
Normal file
After Width: | Height: | Size: 75 KiB |
BIN
Biometric Systems/images/Pasted image 20241212085003.png
Normal file
After Width: | Height: | Size: 93 KiB |
BIN
Biometric Systems/images/Pasted image 20241212090608.png
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
Biometric Systems/images/Pasted image 20241212091320.png
Normal file
After Width: | Height: | Size: 90 KiB |
BIN
Biometric Systems/images/Pasted image 20241212093900.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
Biometric Systems/images/Pasted image 20241212093902.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
Biometric Systems/images/Pasted image 20241212093927.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
Biometric Systems/images/Pasted image 20241212093943.png
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
Biometric Systems/images/Pasted image 20241212094000.png
Normal file
After Width: | Height: | Size: 27 KiB |
BIN
Biometric Systems/images/Pasted image 20241212094016.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
Biometric Systems/images/Pasted image 20241212094046.png
Normal file
After Width: | Height: | Size: 49 KiB |
|
@ -95,3 +95,8 @@ Questo modello è utile per migliorare l'accuratezza nel riconoscimento dell'iri
|
||||||
|
|
||||||
### NICE competition
|
### NICE competition
|
||||||
cose
|
cose
|
||||||
|
|
||||||
|
> [!PDF|yellow] [[LEZIONE10_Iris recognition.pdf#page=48&color=yellow|LEZIONE10_Iris recognition, p.48]]
|
||||||
|
> > Canny filtering
|
||||||
|
>
|
||||||
|
> i punti sono considerati se adiacenti ad altri edge
|
136
Biometric Systems/notes/13. Multi biometric.md
Normal file
|
@ -0,0 +1,136 @@
|
||||||
|
|
||||||
|
The idea is to complement the weaknesses of a system with the strengths of another.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
- **multiple biometric traits** (e.g. signature + fingerprint, used in India, USA ecc.)
|
||||||
|
- most obvious meaning of multi biometrics
|
||||||
|
- **multiple instances:** same trait but acquired in different nuances (i.e. 2 or more different fingers, both irises, both ears, multiple instances of hand geometry...)
|
||||||
|
- **repeated instances:** same trait, same element, but acquired multiple times
|
||||||
|
- **multiple algorithms:** same trait, same element but using multiple classifiers
|
||||||
|
- exploits strengths and weaknesses
|
||||||
|
- **multiple sensors:** i.e. fingerprint with both optical and capacitive sensor
|
||||||
|
|
||||||
|
Where do the fusion happen?
|
||||||
|
It can happen
|
||||||
|
- **at sensor level:**
|
||||||
|
- not always feasible
|
||||||
|
- **at feature level:** fusing feature vectors before matching
|
||||||
|
- not always feasible: feature vectors should be comparable in nature and size
|
||||||
|
- an example is when we have multiple samples of the same traits, in this case they will be certainly comparable
|
||||||
|
- **score level fusion:** or match level fusion. Consists in fusing the scores (probability scores) or rankings
|
||||||
|
- most feasible solution
|
||||||
|
- each system works by itself
|
||||||
|
- scores need to be comparable: normalization in a common range may be required
|
||||||
|
- **decision level fusion:** separate decisions (look at slide)
|
||||||
|
|
||||||
|
![[Pasted image 20241212084256.png|500]]
|
||||||
|
|
||||||
|
#### Feature level fusion
|
||||||
|
![[Pasted image 20241212084349.png|600]]
|
||||||
|
|
||||||
|
Better results are expected, since much more information is still present
|
||||||
|
Possible problems:
|
||||||
|
- incompatible feature set
|
||||||
|
- feature vector combination may cause "curse of dimensionality"
|
||||||
|
- a more complex matcher may be required
|
||||||
|
- combined vectors may include noisy or redundant data.
|
||||||
|
|
||||||
|
|
||||||
|
##### Feature level fusion: serial
|
||||||
|
example: use SIFT (scalar invariant feature transform)
|
||||||
|
Phases:
|
||||||
|
- feature extraction (SIFT feature set)
|
||||||
|
- feature normalization: required due to the possible significant differences in the scale of the vector values
|
||||||
|
|
||||||
|
Problems to address:
|
||||||
|
- feature selection / reduction (complete with slide)
|
||||||
|
- matching
|
||||||
|
|
||||||
|
##### Feature level fusion: parallel
|
||||||
|
parallel combination of the two vectors:
|
||||||
|
- vector normalization (shorter should be extended if size is different)
|
||||||
|
- pre-processing of vectors: weighted combination through the coefficient $\theta$
|
||||||
|
- further feature processing: PCA, L-L expansion, LDA
|
||||||
|
|
||||||
|
add CCA
|
||||||
|
|
||||||
|
#### Score level fusion
|
||||||
|
![[Pasted image 20241212085003.png]]
|
||||||
|
|
||||||
|
Transformation based: scores from different matchers are first normalized in a common domain and then combined using fusion rules
|
||||||
|
|
||||||
|
Classifier based: the scores are considered as features and included into a feature vector. A further classifier is trained (can be SVM, decision tree, neural netework...)
|
||||||
|
|
||||||
|
##### Fusion rules
|
||||||
|
**Abstract:** each classifier outputs a class label
|
||||||
|
Majority vote: each classifier votes for a class
|
||||||
|
|
||||||
|
**Rank:** each classifier outputs its class rank
|
||||||
|
Borda count:
|
||||||
|
- each classifier produces a ranking (classifica) according to the probability of the pattern belonging to them
|
||||||
|
- ranking are converted in scores and summed up
|
||||||
|
- the class with the highest final score is the one chosen by the multi-classifier
|
||||||
|
|
||||||
|
es. su 4 posti disponibili, la classe più probabile ha rank 4, quella meno probabile rank 1. I rank di ogni classificatore si sommano.
|
||||||
|
Can also be used in identification open set, using a threshold to discard low scores (score is the sum of ranks)
|
||||||
|
|
||||||
|
**Measurement:** each classifier outputs its classification score
|
||||||
|
![[Pasted image 20241212090608.png|600]]
|
||||||
|
|
||||||
|
Different methods are possible (i.e. sum, weighted sum, mean, product, weighted product, max, min, ecc.)
|
||||||
|
|
||||||
|
- sum: the sum of the returned confidence vectors is computed, pattern is classified according to the highest value
|
||||||
|
|
||||||
|
Scores from different matchers are typically unhomogeneous:
|
||||||
|
- different range
|
||||||
|
- similarity vs distance
|
||||||
|
- different distributions
|
||||||
|
|
||||||
|
Normalization is required!
|
||||||
|
But there are issues to consider when choosing a normalization method:
|
||||||
|
- robustness: the transformation should not be influenced by outliers
|
||||||
|
- effectiveness: estimated parameters for the score distribution should be best approximate the real values
|
||||||
|
|
||||||
|
##### Reliability
|
||||||
|
A reliability measure for each single response of each subsystem before fusing them in a final response. Confidence margins being a possible solution.
|
||||||
|
Poh e Bengio: solution based on FAR and FRR $M(\nabla) = |FAR(\nabla)-F\mathbb{R}(\nabla)|$
|
||||||
|
|
||||||
|
#### Decision level fusion
|
||||||
|
![[Pasted image 20241212091320.png|600]]
|
||||||
|
|
||||||
|
A common way is majority voting. But also serial combination (AND) or parallel combination (OR) can be used.
|
||||||
|
Be careful when using OR: if a single classifier says ok but the other fails, it is accepted (less secure)!
|
||||||
|
|
||||||
|
#### Template updating - Co-Update method
|
||||||
|
mi sono distratto, integrare con slide
|
||||||
|
|
||||||
|
#### Data normalization
|
||||||
|
|
||||||
|
When minimum and maximum values are known, normalization is trivial.
|
||||||
|
For this reason, we assumed to **miss** an exact estimate of the maximum value.
|
||||||
|
We chose the average value in its place, in order to stress normalization functions even more.
|
||||||
|
|
||||||
|
Normalization functions:
|
||||||
|
- min/max
|
||||||
|
- $s'_{k}=\frac{s_{k}-min}{max-min}$
|
||||||
|
- z-score
|
||||||
|
-
|
||||||
|
- median/mad
|
||||||
|
-
|
||||||
|
- sigmoid
|
||||||
|
-
|
||||||
|
- tanh
|
||||||
|
|
||||||
|
![[Pasted image 20241212094046.png|300]]
|
||||||
|
|
||||||
|
The Min-max normalization technique performs a “mapping” (shifting + compression/dilation) of the interval between the minimum and maximum values in the interval between 0 and 1
|
||||||
|
![[Pasted image 20241212093902.png|200]]
|
||||||
|
|
||||||
|
![[Pasted image 20241212093927.png|200]]
|
||||||
|
|
||||||
|
![[Pasted image 20241212093943.png|200]]
|
||||||
|
|
||||||
|
![[Pasted image 20241212094000.png|200]]
|
||||||
|
|
||||||
|
![[Pasted image 20241212094016.png|200]]
|
||||||
|
|
1
Biometric Systems/notes/multi bio.md
Normal file
|
@ -0,0 +1 @@
|
||||||
|
score level fusion
|