vault backup: 2025-04-14 17:05:00

This commit is contained in:
Marco Realacci 2025-04-14 17:05:00 +02:00
parent 61c69827fd
commit 7227bcbc96
2 changed files with 7 additions and 15 deletions

View file

@ -123,23 +123,15 @@ From this, we can do:
These actions **complement each other**, so we can apply the **synchronization rule**:
A→bˉAB→bBAB→τAB\frac{A' \xrightarrow{\bar{b}} A \quad B \xrightarrow{b} B'}{A' \mid B \xrightarrow{\tau} A \mid B'}
$$\frac{A' \xrightarrow{\bar{b}} A \quad B \xrightarrow{b} B'}{A' \mid B \xrightarrow{\tau} A \mid B'}$$
✅ **Second transition:**
$$A' \mid B \xrightarrow{\tau} A \mid B'$$
AB→τABA' \mid B \xrightarrow{\tau} A \mid B'
---
## ▶️ Step 3: Transition from B'
##### ▶️ Step 3: Transition from B'
From the definition:
- B≜cˉ.BB' \triangleq \bar{c}.B
So:
B→cˉBB' \xrightarrow{\bar{c}} B
- $BB' \triangleq \bar{c}.B$
- So: B→cˉBB' \xrightarrow{\bar{c}} B
Now use the **right parallel rule**: