vault backup: 2025-04-08 09:37:21
This commit is contained in:
parent
05c144a5d1
commit
7f58845b20
2 changed files with 9 additions and 6 deletions
9
.obsidian/workspace.json
vendored
9
.obsidian/workspace.json
vendored
|
@ -13,12 +13,12 @@
|
|||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "Concurrent Systems/notes/11 - non so cosa faremo oggi.md",
|
||||
"file": "Concurrent Systems/notes/11 - LTSs and Bisimulation.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
},
|
||||
"icon": "lucide-file",
|
||||
"title": "11 - non so cosa faremo oggi"
|
||||
"title": "11 - LTSs and Bisimulation"
|
||||
}
|
||||
}
|
||||
]
|
||||
|
@ -192,8 +192,7 @@
|
|||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 364.5,
|
||||
"collapsed": true
|
||||
"width": 364.5
|
||||
},
|
||||
"left-ribbon": {
|
||||
"hiddenItems": {
|
||||
|
@ -212,7 +211,7 @@
|
|||
"active": "40e3ec35e1961dd0",
|
||||
"lastOpenFiles": [
|
||||
"Concurrent Systems/slides/class 11.pdf",
|
||||
"Concurrent Systems/notes/11 - non so cosa faremo oggi.md",
|
||||
"Concurrent Systems/notes/11 - LTSs and Bisimulation.md",
|
||||
"Pasted image 20250408092853.png",
|
||||
"Pasted image 20250408091924.png",
|
||||
"Concurrent Systems/notes/10 - Implementing Consensus.md",
|
||||
|
|
|
@ -29,7 +29,11 @@ In concurrency theory, we don’t use finite automata but Labeled Transition Sys
|
|||
- automata fix one starting state, whereas in an LTS every state can be considered as initial (this corresponds to different possible behaviors of the process)
|
||||
- automata rely on final states for describing the language accepted, whereas in LTS this notion is not very informative
|
||||
|
||||
Fix a set of action names (or, simply, actions), written N.
|
||||
>[!note] LTS formal definition
|
||||
>Fix a set of action names (or, simply, actions), written N.
|
||||
>
|
||||
>A Labeled Transition System (LTS) is a pair (Q, T), where Q is the set of states and T is the transition relation (T ⊆ Q × N × Q).
|
||||
|
||||
We shall usually write s –a–> s′ instead of ⟨s,a,s′⟩ ∈ T.
|
||||
|
||||
### Bisimulation
|
Loading…
Add table
Add a link
Reference in a new issue