vault backup: 2025-04-14 16:50:00

This commit is contained in:
Marco Realacci 2025-04-14 16:50:00 +02:00
parent 3b2ae57b43
commit 81ff94637d
3 changed files with 12 additions and 24 deletions

View file

@ -240,6 +240,7 @@
}, },
"active": "84845736e00d5c98", "active": "84845736e00d5c98",
"lastOpenFiles": [ "lastOpenFiles": [
"Pasted image 20250414164549.png",
"Concurrent Systems/slides/class 12.pdf", "Concurrent Systems/slides/class 12.pdf",
"Concurrent Systems/notes/12 - CCS (che non so cosa voglia dire).md", "Concurrent Systems/notes/12 - CCS (che non so cosa voglia dire).md",
"Concurrent Systems/notes/images/Pasted image 20250414082824.png", "Concurrent Systems/notes/images/Pasted image 20250414082824.png",

View file

@ -91,48 +91,35 @@ Sure Marco! Let's go step-by-step through the **CCS process transition example**
--- ---
#### Example #### Example
![](../../Pasted%20image%2020250414164549.png)
#### Example, but explained
##### 📘 Definitions ##### 📘 Definitions
We start with the following **process definitions**: We start with the following **process definitions**:
- $A \triangleq a.A'$ - $A \triangleq a.A'$
- $A' \triangleq \bar{b}.A$ - $A' \triangleq \bar{b}.A$
- $B \triangleq b.B'$ - $B \triangleq b.B'$
- $B' \triangleq \bar{c}.B$ - $B' \triangleq \bar{c}.B$
Our **initial process** is: $A \mid B$ Our **initial process** is: $A \mid B$
##### ▶️ Step 1: Transition from A ##### ▶️ Step 1: Transition from A
From the definition: From the definition:
- $A \triangleq a.A'$ - $A \triangleq a.A'$
- So we can do: $A \xrightarrow{a} A'$ (A consumes ) - So we can do: $A \xrightarrow{a} A'$ (A consumes a and becomes A')
Using the **parallel rule** for the left-hand side: Using the **parallel rule** for the left-hand side:
$$\frac{A \xrightarrow{a} A'}{A \mid B \xrightarrow{a} A' \mid B}$$
**First transition:** $A \mid B \xrightarrow{a} A' \mid B$
A→aAAB→aAB\frac{A \xrightarrow{a} A'}{A \mid B \xrightarrow{a} A' \mid B} ##### ▶️ Step 2: Synchronization: $\bar{b}$ and $b$
✅ **First transition:**
AB→aABA \mid B \xrightarrow{a} A' \mid B
---
## ▶️ Step 2: Synchronization: bˉ\bar{b} and bb
We now have: We now have:
- Left process: $A' \triangleq \bar{b}.A$
- Left process: A≜bˉ.AA' \triangleq \bar{b}.A - Right process: $B \triangleq b.B'$
- Right process: B≜b.BB \triangleq b.B'
From this, we can do: From this, we can do:
- $A' \xrightarrow{\bar{b}} A$
- A→bˉAA' \xrightarrow{\bar{b}} A - $B \xrightarrow{b} B'$
- B→bBB \xrightarrow{b} B'
These actions **complement each other**, so we can apply the **synchronization rule**: These actions **complement each other**, so we can apply the **synchronization rule**:

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB