vault backup: 2025-03-26 12:13:51

This commit is contained in:
Marco Realacci 2025-03-26 12:13:52 +01:00
parent 8b459166d7
commit 87641c0527

View file

@ -34,7 +34,7 @@ Hence, we have two histories that are sequentially consistent but whose composit
**Def:** a complete history $\hat{H}$ is **serializable** if there exists a sequential history $\hat{S}$ s.t. **Def:** a complete history $\hat{H}$ is **serializable** if there exists a sequential history $\hat{S}$ s.t.
1. $\forall X : \hat{S}|_X \in semantics(X)$ 1. $\forall X : \hat{S}|_X \in semantics(X)$
2. $S = \{e \in H : e \in t \ in committedTrans(\hat{H})\}$ 2. $S = \{e \in H : e \in t \in committedTrans(\hat{H})\}$
3. $\to_{trans} \subseteq \to_{S}$ where $\to_{trans}$ is defined like $\to_{proc}$ in sequential consistency. 3. $\to_{trans} \subseteq \to_{S}$ where $\to_{trans}$ is defined like $\to_{proc}$ in sequential consistency.
It is a more general notion than linearizability, **but it is not compositional** (consider the previous example but with transactions instead of processes). It is a more general notion than linearizability, **but it is not compositional** (consider the previous example but with transactions instead of processes).