vault backup: 2024-10-21 00:47:19
50
.obsidian/core-plugins.json
vendored
|
@ -1,20 +1,30 @@
|
||||||
[
|
{
|
||||||
"file-explorer",
|
"file-explorer": true,
|
||||||
"global-search",
|
"global-search": true,
|
||||||
"switcher",
|
"switcher": true,
|
||||||
"graph",
|
"graph": true,
|
||||||
"backlink",
|
"backlink": true,
|
||||||
"canvas",
|
"canvas": true,
|
||||||
"outgoing-link",
|
"outgoing-link": true,
|
||||||
"tag-pane",
|
"tag-pane": true,
|
||||||
"page-preview",
|
"properties": false,
|
||||||
"daily-notes",
|
"page-preview": true,
|
||||||
"templates",
|
"daily-notes": true,
|
||||||
"note-composer",
|
"templates": true,
|
||||||
"command-palette",
|
"note-composer": true,
|
||||||
"editor-status",
|
"command-palette": true,
|
||||||
"bookmarks",
|
"slash-command": false,
|
||||||
"outline",
|
"editor-status": true,
|
||||||
"word-count",
|
"bookmarks": true,
|
||||||
"file-recovery"
|
"markdown-importer": false,
|
||||||
]
|
"zk-prefixer": false,
|
||||||
|
"random-note": false,
|
||||||
|
"outline": true,
|
||||||
|
"word-count": true,
|
||||||
|
"slides": false,
|
||||||
|
"audio-recorder": false,
|
||||||
|
"workspaces": false,
|
||||||
|
"file-recovery": true,
|
||||||
|
"publish": false,
|
||||||
|
"sync": false
|
||||||
|
}
|
46
.obsidian/workspace.json
vendored
|
@ -18,8 +18,20 @@
|
||||||
"source": false
|
"source": false
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "62ee7b4dbafbf11b",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "diff-view",
|
||||||
|
"state": {
|
||||||
|
"file": "Biometric Systems/notes/3. Recognition Reliability.md",
|
||||||
|
"staged": true
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
]
|
],
|
||||||
|
"currentTab": 1
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"direction": "vertical"
|
"direction": "vertical"
|
||||||
|
@ -85,7 +97,6 @@
|
||||||
"state": {
|
"state": {
|
||||||
"type": "backlink",
|
"type": "backlink",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Autonomous Networking/notes/4 WSN Routing.md",
|
|
||||||
"collapseAll": false,
|
"collapseAll": false,
|
||||||
"extraContext": false,
|
"extraContext": false,
|
||||||
"sortOrder": "alphabetical",
|
"sortOrder": "alphabetical",
|
||||||
|
@ -102,7 +113,6 @@
|
||||||
"state": {
|
"state": {
|
||||||
"type": "outgoing-link",
|
"type": "outgoing-link",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Autonomous Networking/notes/4 WSN Routing.md",
|
|
||||||
"linksCollapsed": false,
|
"linksCollapsed": false,
|
||||||
"unlinkedCollapsed": true
|
"unlinkedCollapsed": true
|
||||||
}
|
}
|
||||||
|
@ -124,9 +134,7 @@
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "outline",
|
"type": "outline",
|
||||||
"state": {
|
"state": {}
|
||||||
"file": "Autonomous Networking/notes/4 WSN Routing.md"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -159,18 +167,29 @@
|
||||||
"obsidian-git:Open Git source control": false
|
"obsidian-git:Open Git source control": false
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"active": "2b2245f56092006e",
|
"active": "62ee7b4dbafbf11b",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
"conflict-files-obsidian-git.md",
|
"conflict-files-obsidian-git.md",
|
||||||
"Autonomous Networking/notes/4 WSN Routing.md",
|
"Autonomous Networking/notes/4 WSN Routing.md",
|
||||||
|
"Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf",
|
||||||
|
"Biometric Systems/notes/4. Face recognition.md",
|
||||||
|
"Biometric Systems/images/Pasted image 20241017083943.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241017083506.png",
|
||||||
|
"Biometric Systems/images/Pasted image 20241017083255.png",
|
||||||
|
"Autonomous Networking/slides/5 Drones.pdf",
|
||||||
|
"Autonomous Networking/notes/6.1 RL.md",
|
||||||
|
"Autonomous Networking/notes/6 Internet of Things.md",
|
||||||
|
"Autonomous Networking/notes/5 Drones.md",
|
||||||
|
"Autonomous Networking/images/Pasted image 20241017161803.png",
|
||||||
|
"Autonomous Networking/images/Pasted image 20241017161747.png",
|
||||||
|
"Autonomous Networking/images/Pasted image 20241017161744.png",
|
||||||
|
"Autonomous Networking/images/Pasted image 20241017161724.png",
|
||||||
|
"Autonomous Networking/images/Pasted image 20241017154152.png",
|
||||||
"Foundation of data science/slides/Untitled.md",
|
"Foundation of data science/slides/Untitled.md",
|
||||||
"Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
|
"Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
|
||||||
"Biometric Systems/notes/3. Recognition Reliability.md",
|
"Biometric Systems/notes/3. Recognition Reliability.md",
|
||||||
"Biometric Systems/images/Pasted image 20241016174417.png",
|
"Biometric Systems/images/Pasted image 20241016174417.png",
|
||||||
"Biometric Systems/images/Pasted image 20241016174411.png",
|
"Biometric Systems/images/Pasted image 20241016174411.png",
|
||||||
"Biometric Systems/images/Pasted image 20241016174120.png",
|
|
||||||
"Biometric Systems/images/Pasted image 20241016143112.png",
|
|
||||||
"Biometric Systems/images/Pasted image 20241016141746.png",
|
|
||||||
"Autonomous Networking/notes/3 WSN MAC.md",
|
"Autonomous Networking/notes/3 WSN MAC.md",
|
||||||
"Autonomous Networking/notes/2 RFID.md",
|
"Autonomous Networking/notes/2 RFID.md",
|
||||||
"Foundation of data science/notes/1 CV Basics.md",
|
"Foundation of data science/notes/1 CV Basics.md",
|
||||||
|
@ -181,16 +200,9 @@
|
||||||
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||||
"Biometric Systems/notes/1. Introduction.md",
|
"Biometric Systems/notes/1. Introduction.md",
|
||||||
"Autonomous Networking/slides/4 WSN2.pdf",
|
"Autonomous Networking/slides/4 WSN2.pdf",
|
||||||
"Autonomous Networking/images/Pasted image 20241012174130.png",
|
|
||||||
"Autonomous Networking/images/Pasted image 20241012182403.png",
|
|
||||||
"Autonomous Networking/images/Pasted image 20241012175224.png",
|
|
||||||
"Autonomous Networking/slides/3 WSN.pdf",
|
"Autonomous Networking/slides/3 WSN.pdf",
|
||||||
"Autonomous Networking/slides/2 RFID.pdf",
|
"Autonomous Networking/slides/2 RFID.pdf",
|
||||||
"Foundation of data science/slides/FDS_intro_new.pdf",
|
"Foundation of data science/slides/FDS_intro_new.pdf",
|
||||||
"Foundation of data science/slides",
|
|
||||||
"Foundation of data science",
|
|
||||||
"Biometric Systems/images/Pasted image 20241002181936.png",
|
|
||||||
"Biometric Systems/images/Pasted image 20241002181932.png",
|
|
||||||
"BUCA/Queues.md",
|
"BUCA/Queues.md",
|
||||||
"Biometric Systems/slides/lezione1 notes.md",
|
"Biometric Systems/slides/lezione1 notes.md",
|
||||||
"prova per obsidian.md",
|
"prova per obsidian.md",
|
||||||
|
|
BIN
Autonomous Networking/images/Pasted image 20241017154152.png
Normal file
After Width: | Height: | Size: 109 KiB |
BIN
Autonomous Networking/images/Pasted image 20241017161724.png
Normal file
After Width: | Height: | Size: 59 KiB |
BIN
Autonomous Networking/images/Pasted image 20241017161744.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
Autonomous Networking/images/Pasted image 20241017161747.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
Autonomous Networking/images/Pasted image 20241017161803.png
Normal file
After Width: | Height: | Size: 64 KiB |
138
Autonomous Networking/notes/5 Drones.md
Normal file
|
@ -0,0 +1,138 @@
|
||||||
|
#### Unmanned Aerial Vehicle (UAV)
|
||||||
|
- UAV, commonly known as a Drone, is an aircraft without a human pilot aboard (unmanned or uncrewed)
|
||||||
|
- it operates
|
||||||
|
- under remote control by a human
|
||||||
|
- autonomously by on board computers
|
||||||
|
|
||||||
|
**Weight:** from 0.5g 15000kg
|
||||||
|
**Maximum speed:** up to 11265Kph
|
||||||
|
**Propellant:**
|
||||||
|
- fossil fuel
|
||||||
|
- battery
|
||||||
|
|
||||||
|
#### Usages
|
||||||
|
- can provide timely disaster warnings
|
||||||
|
- medical supplies
|
||||||
|
- dangerous situations
|
||||||
|
- traffic monitoring, wind estimation, remote sensing...
|
||||||
|
|
||||||
|
I many scenarios, UAVs need to exchange a relatively large amount of data among themselves and/or a control station. In many case there isn't any network infrastructure available. Drones can also used to expand terrestrial communication networks.
|
||||||
|
|
||||||
|
Drones can be equipped with several standard radio modules:
|
||||||
|
- Wi-Fi
|
||||||
|
- Cellular
|
||||||
|
- LPWAN (low power wide area network, es. LoRa)
|
||||||
|
|
||||||
|
## Routing
|
||||||
|
may require multi-hop data connections
|
||||||
|
#### Comparison WSN with Dronets
|
||||||
|
|
||||||
|
| | **WSN** | **Dronet** |
|
||||||
|
| ------------------ | --------------------------------- | -------------------------------- |
|
||||||
|
| **Mobility** | none or partial | high, even 3D |
|
||||||
|
| **Topology** | random, star, ad-hoc node failure | mesh |
|
||||||
|
| **Infrastructure** | absent | absent |
|
||||||
|
| **Energy source** | battery | battery (very limited) |
|
||||||
|
| **Typical use** | environmental monitoring | rescue, monitoring, surveillance |
|
||||||
|
|
||||||
|
**Goals of routing protocols:**
|
||||||
|
- increase delivery ratio
|
||||||
|
- loop freedom
|
||||||
|
- low overhead
|
||||||
|
- reduce delays
|
||||||
|
- energy consumption
|
||||||
|
- scalability
|
||||||
|
|
||||||
|
### Proactive routing protocols
|
||||||
|
Are they suitable for UAV networks?
|
||||||
|
- slow reaction to topology changes, will cause delays
|
||||||
|
- bandwidth constraints
|
||||||
|
|
||||||
|
Protocols:
|
||||||
|
- OLSR - Optimize Link State Routing
|
||||||
|
- DSDV - Destination-Sequenced Distance Vector
|
||||||
|
- B.A.T.M.A.N. - Better Approach to Mobile Ad Hoc Network
|
||||||
|
|
||||||
|
### Reactive protocols
|
||||||
|
- DSR - Dynamic Source Routing
|
||||||
|
- AODV - Ad hoc On Demand Distance Vector
|
||||||
|
|
||||||
|
#### Hybrid protocols
|
||||||
|
- ZRP - Zone Routing Protocol
|
||||||
|
- TORA - Temporarily Ordered Routing Algorithm
|
||||||
|
|
||||||
|
### B.A.T.M.A.N.
|
||||||
|
A proactive, distance-vector routing protocol for Mobile Ad-hoc Networks (MANETs) and Mesh Networks. Designed for decentralized decision-making and self-organizing networks.
|
||||||
|
|
||||||
|
**Key features:**
|
||||||
|
- decentralized routing
|
||||||
|
- no node has global knowledge of the entire network
|
||||||
|
- next-hop based
|
||||||
|
- nodes only know their best-hop neighbor for reaching a destination
|
||||||
|
- link quality driven
|
||||||
|
- decisions are based on the quality of the link between nodes
|
||||||
|
- self-healing
|
||||||
|
- adapts to changes automatically
|
||||||
|
|
||||||
|
**How batman works**
|
||||||
|
- Originator messages (OGMs):
|
||||||
|
- broadcast to announce its presence
|
||||||
|
- OGMs are forwarded by neighbors to propagate through the network
|
||||||
|
- each OGM carries a sequence number to ensure the information is up-to-date and avoid routing loops
|
||||||
|
- nodes evaluates how frequently they receive OGMs to their neighbors to determine link quality
|
||||||
|
- each node maintains a routing table with the best next-hop neighbor based on link quality
|
||||||
|
|
||||||
|
- fields inside OGM
|
||||||
|
- originator address
|
||||||
|
- sequence number
|
||||||
|
- TTL (hop limit)
|
||||||
|
- LQ (quality between the sender and the originator)
|
||||||
|
- hop count
|
||||||
|
|
||||||
|
Asimmetry problem:
|
||||||
|
If A can reach B well, B thinks it can reach A well too. But it may not be the case.
|
||||||
|
To overcome the issue there is the Transmit Quality (TQ) algorithm.
|
||||||
|
|
||||||
|
B transmits RQ (receive quality) packet to A. A counts them to know the link quality.
|
||||||
|
A knows the echo quality by counting the rebroadcasts of its own OGMs from its neighbors.
|
||||||
|
Dividing echo quality by receiving quality, A can calculate the transmit quality.
|
||||||
|
|
||||||
|
**propagation**
|
||||||
|
A when originates the OGMs, it sets TQ to 100%. The neighbor computes their own local link quality into the received TQ value and rebroadcast the packet.
|
||||||
|
- $TQ = TQ_{incoming} * TQ_{local}$
|
||||||
|
|
||||||
|
![[Pasted image 20241017154152.png]]
|
||||||
|
|
||||||
|
### Geographic protocols
|
||||||
|
the geographical position information of the nodes is utilized for forwarding decisions.
|
||||||
|
Nodes knows their position by GPS.
|
||||||
|
|
||||||
|
Geographic routing schemes don't need the entire network information
|
||||||
|
- no routing discovery
|
||||||
|
- no routing tables
|
||||||
|
- forward packet based on local information
|
||||||
|
- less overhead, bandwidth and so energy consumption
|
||||||
|
- for routing decisions a drone needs only the neighbors and destination position
|
||||||
|
|
||||||
|
Every node has coordinates of neighbors.
|
||||||
|
|
||||||
|
**Dead end problem**
|
||||||
|
several techniques have been defined in sensor networks to recover from a dead end but they are often not applicable to dronets.
|
||||||
|
|
||||||
|
Geo routing is based on three main approaches
|
||||||
|
|
||||||
|
##### Greedy forwarding
|
||||||
|
as stated before
|
||||||
|
|
||||||
|
#### Store-carry and forward
|
||||||
|
When the network is intermittently connected, forwarder nodes do not have any a solution to find a relay node. Not possible to forward any data packet to a predefined node which is not in range. So the current node will carry the packet until it meet another node or the destination target itself.
|
||||||
|
|
||||||
|
#### Prediction
|
||||||
|
based on geographical location, direction, and speed to predict the future position of a given node. They will predict the position of a next relay node.
|
||||||
|
|
||||||
|
### DGA algorithm
|
||||||
|
![[Pasted image 20241017161724.png]]
|
||||||
|
![[Pasted image 20241017161747.png]]
|
||||||
|
|
||||||
|
![[Pasted image 20241017161803.png]]
|
||||||
|
|
55
Autonomous Networking/notes/6 Internet of Things.md
Normal file
|
@ -0,0 +1,55 @@
|
||||||
|
IoT term is used to refer to
|
||||||
|
- the resulting globlal network of connecting smart objects
|
||||||
|
- the protocols ...
|
||||||
|
- ...
|
||||||
|
|
||||||
|
required features:
|
||||||
|
- devices hetereogeneity
|
||||||
|
- scalability
|
||||||
|
- data ubiquitous data exchange
|
||||||
|
- energy-optimized solutions
|
||||||
|
|
||||||
|
|
||||||
|
#### Backscattering
|
||||||
|
- allows devices to run without battery
|
||||||
|
- only available at research level for now
|
||||||
|
- use radio frequency signals as power source
|
||||||
|
- two types
|
||||||
|
- ambient
|
||||||
|
- rfid
|
||||||
|
|
||||||
|
##### Ambient backscattering
|
||||||
|
- devices harvest power from signals available in the environment
|
||||||
|
- they use existing RF signals without requiring any additional
|
||||||
|
|
||||||
|
- Performance drawbacks
|
||||||
|
- low data rate (about 1kbps)
|
||||||
|
- not suitable for real-time applications that continuously exchange data
|
||||||
|
- availability of signals
|
||||||
|
- signal may not be available indoor or not powerful enough
|
||||||
|
|
||||||
|
##### RFID backscattering
|
||||||
|
|
||||||
|
...
|
||||||
|
|
||||||
|
##### Battery free smart home
|
||||||
|
- in a smart home there may be a lot of smart devices
|
||||||
|
- if every one of them has a battery, it's not good for the environment
|
||||||
|
- we can deploy an RFID reader with multiple antennas that covers all the different rooms
|
||||||
|
|
||||||
|
### Communication
|
||||||
|
add scheme slide
|
||||||
|
|
||||||
|
RFID tags run EPC Global Standard
|
||||||
|
- in a smart home we may want less bits dedicated to the tag id and more dedicated to the actual data
|
||||||
|
- 8 bits for ID
|
||||||
|
- 6 bits for data
|
||||||
|
- 4 for CRC
|
||||||
|
|
||||||
|
### Infrastructure based wireless networks
|
||||||
|
- base stations connected to wired backbone network
|
||||||
|
- stations choses the closest base station
|
||||||
|
- Limits
|
||||||
|
- when no infrastructure is available
|
||||||
|
- expensive/inconvenient to setup
|
||||||
|
- when there is no time to set it up
|
122
Autonomous Networking/notes/6.1 RL.md
Normal file
|
@ -0,0 +1,122 @@
|
||||||
|
Case study: battery-free smart home
|
||||||
|
- each device produces a new data sample with a rate that depends on the environment and the user (continuously, event based / on demand...)
|
||||||
|
- a device should only transmit when it has new data
|
||||||
|
- but in backscattering-based networks they need to be queried by the receiver
|
||||||
|
|
||||||
|
In which order should the reader query tags?
|
||||||
|
- assume prefixed timeslots
|
||||||
|
- TDMA with random access performs poorly
|
||||||
|
- TDMA with fixed assignment also does (wasted queries)
|
||||||
|
- we want to query devices that have new data samples and avoid
|
||||||
|
- data loss
|
||||||
|
- redundant queries
|
||||||
|
|
||||||
|
Goal: design a mac protocol that adapts to all of this.
|
||||||
|
One possibility is to use Reinforcement Learning
|
||||||
|
|
||||||
|
#### Reinforcement learning
|
||||||
|
How can an intelligent agent learns to make a good sequence of decisions
|
||||||
|
|
||||||
|
- an agent can figure out how the world works by trying things and see what happens
|
||||||
|
- is what people and animals do
|
||||||
|
- we explore a computational approach to learning from interaction
|
||||||
|
- goal-directed learning from interaction
|
||||||
|
|
||||||
|
RL is learning what to do, it presents two main characteristics:
|
||||||
|
- trial and error search
|
||||||
|
- delayed reward
|
||||||
|
|
||||||
|
- sensation, action and goal are the 3 main aspects of a reinforcement learning method
|
||||||
|
- a learning agents must be able to
|
||||||
|
- sense the state of the environment
|
||||||
|
- take actions that affects the state
|
||||||
|
|
||||||
|
Difference from other ML
|
||||||
|
- no supervisor
|
||||||
|
- feedback may be delayed
|
||||||
|
- time matters
|
||||||
|
- agent action affects future decisions
|
||||||
|
- ...
|
||||||
|
- online learning
|
||||||
|
|
||||||
|
Learning online
|
||||||
|
- learning while interacting with an ever changing world
|
||||||
|
- we expect agents to get things wrong, to refine their understanding as they go
|
||||||
|
- the world is not static, agents continuously encounter new situations
|
||||||
|
|
||||||
|
RL applications:
|
||||||
|
- self driving cars
|
||||||
|
- engineering
|
||||||
|
- healthcare
|
||||||
|
- news recommendation
|
||||||
|
- ...
|
||||||
|
|
||||||
|
Rewards
|
||||||
|
- a reward is a scalar feedback signal (a number)
|
||||||
|
- reward Rt indicates how well the agent is doing at step t
|
||||||
|
- the agent should maximize cumulative reward
|
||||||
|
|
||||||
|
RL based on the reward hypotesis
|
||||||
|
all goals can be described by the maximization of expected cumulative rewards
|
||||||
|
|
||||||
|
communication in battery free environments
|
||||||
|
- positive rewards if the queried device has new data
|
||||||
|
- else negative
|
||||||
|
|
||||||
|
Challenge:
|
||||||
|
- tradeoff between exploration and exploitation
|
||||||
|
- to obtain a lot of reward a RL agent must prefer action that it tried and ...
|
||||||
|
- ...
|
||||||
|
|
||||||
|
exploration vs exploitation dilemma:
|
||||||
|
- comes from incomplete information: we need to gather enough information to make best overall decisions while keeping the risk under control
|
||||||
|
- exploitation: we take advanced of the best option we know
|
||||||
|
- exploration: test new decisions
|
||||||
|
|
||||||
|
### A general RL framework
|
||||||
|
at each timestamp the agent
|
||||||
|
- executes action
|
||||||
|
- receives observation
|
||||||
|
- receives scalar reward
|
||||||
|
|
||||||
|
the environment
|
||||||
|
...
|
||||||
|
|
||||||
|
agent state: the view of the agent on the environment state, is a function of history
|
||||||
|
- the function of the history is involved in taking the next decision
|
||||||
|
- the state representation defines what happens next
|
||||||
|
- ...
|
||||||
|
|
||||||
|
#### Inside the agent
|
||||||
|
one or more of these components
|
||||||
|
- **Policy:** agent's behavior function
|
||||||
|
- defines what to do (behavior at a given time)
|
||||||
|
- maps state to action
|
||||||
|
- core of the RL agent
|
||||||
|
- the policy is altered based on the reward
|
||||||
|
- may be
|
||||||
|
- deterministic: single function of the state
|
||||||
|
- stochastic: specifying probabilities for each actions
|
||||||
|
- reward changes probabilities
|
||||||
|
- **Value function:**
|
||||||
|
- specifies what's good in the long run
|
||||||
|
- is a prediction of future reward
|
||||||
|
- used to evaluate the goodness/badness of states
|
||||||
|
- values are prediction of rewards
|
||||||
|
- Vp(s) = Ep[yRt+1 + y^2Rt+2 ... | St = s]
|
||||||
|
- **Model:**
|
||||||
|
- predicts what the environment will do next
|
||||||
|
- many problems are model free
|
||||||
|
|
||||||
|
back to the original problem:
|
||||||
|
- n devices
|
||||||
|
- each devices produces new data with rate_i
|
||||||
|
- in which order should the reader query tags?
|
||||||
|
- formulate as an RL problem
|
||||||
|
- agent is the reder
|
||||||
|
- one action per device (query)
|
||||||
|
- rewards:
|
||||||
|
- positive when querying a device with new data
|
||||||
|
- negative if it has no data
|
||||||
|
- what to do if the device has lost data?
|
||||||
|
- state?
|
BIN
Autonomous Networking/slides/5 Drones.pdf
Normal file
BIN
Biometric Systems/images/Pasted image 20241017083255.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
Biometric Systems/images/Pasted image 20241017083506.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
Biometric Systems/images/Pasted image 20241017083943.png
Normal file
After Width: | Height: | Size: 44 KiB |
|
@ -120,4 +120,38 @@ vedere slide per integrare formule
|
||||||
#### Margine
|
#### Margine
|
||||||
Un altro approccio è tramite il concetto di “margine”, che viene calcolato
|
Un altro approccio è tramite il concetto di “margine”, che viene calcolato
|
||||||
nel seguente modo: $M(t) = |FAR(t) − FRR(t)|$
|
nel seguente modo: $M(t) = |FAR(t) − FRR(t)|$
|
||||||
notare in corrispondenza dell'ERR, si ha $M(t) = 0$
|
notare in corrispondenza dell'ERR, si ha $M(t) = 0$
|
||||||
|
|
||||||
|
### SRR
|
||||||
|
C’è una netta differenza tra misurare la qualità di un’immagine in input rispetto
|
||||||
|
al misurare l’affidabilità di una risposta da parte del sistema.
|
||||||
|
Quest’ultimo approccio viene chiamato indice SRR, ovvero un valore nel range [0, 1] che fornisce una misura di quanto un sistema, in fase di identificazione, riesce a separare bene soggetti genuini da soggetti impostori sulla base di un singolo probe.
|
||||||
|
Questo sistema utilizza una funzione φ che misura la quantità di “confusione” tra i possibili candidati.
|
||||||
|
Definiamo due funzioni φ
|
||||||
|
- relative distance
|
||||||
|
- density ratio
|
||||||
|
|
||||||
|
Presa la lista data in output da una fase di identificazione, si guarda nell’intorno del risultato a rango 1. Se i soggetti a ranghi più bassi sono molto vicini, avremo una risposta poco affidabile, altrimenti se c’è una buona distanza avremo una risposta affidabile.
|
||||||
|
|
||||||
|
|
||||||
|
Possibili esempi di φ sono:
|
||||||
|
|
||||||
|
- Relative distance
|
||||||
|
![[Pasted image 20241017083255.png]]
|
||||||
|
$$φ(p) = \frac{F (d(p, g1 )) − F (d(p, g2))}{F (d(p, g|G| ))}$$
|
||||||
|
|
||||||
|
|
||||||
|
- Density ratio![[Pasted image 20241017083506.png]]
|
||||||
|
- questa funzione è meno sensibile agli "outlier", ovvero template con distanza anomalamente molto alta dal probe, e infatti performa meglio della funzione precedente
|
||||||
|
|
||||||
|
Definiamo poi φk , come quel valore che minimizza gli errori di φ(p), ovvero
|
||||||
|
i casi in cui, probe impostori hanno φ(pI) > φk e probe genuini hanno φ(pG) ≤
|
||||||
|
φk . Valori φ(p) molti distanti da φk avranno un SRR maggiore, quindi:
|
||||||
|
![[Pasted image 20241017083943.png]]
|
||||||
|
|
||||||
|
#### Template Updating
|
||||||
|
Un altro modo per aumentare la qualità e l’affidabilità di un sistema è quella tramite l’aggiornamento dei template (evitando problemi come l’invecchiamento).
|
||||||
|
Si può prendere un probe e aggiungerlo al gallery.
|
||||||
|
Questa operazione per una maggiore sicurezza deve essere fatta in soli due possibili modi:
|
||||||
|
- Supervisionata (supervised)
|
||||||
|
- Semi-supervisionata (semi-supervised)
|
21
Biometric Systems/notes/4. Face recognition.md
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
I fattori più importanti di un sistema biometrico sono l’accettabilità, l’affidabilità e l’accuratezza. l DNA, ad esempio, fornisce un’alta accuratezza e affidabilità ma una bassa accettabilità, in quanto il metodo di prelievo è sicuramente intrusivo. Le impronte digitali, invece, forniscono anch'esse buone prestazioni, ma possono spesso presentarsi in modo “parziale” e inoltre sono spesso associate ai ”criminali”. Il riconoscimento facciale invece è altamente accettato, in quanto siamo abituati a farci foto e a pubblicarle, ma l’accuratezza può diminuire drasticamente in casi non controllati.
|
||||||
|
Possibili problemi relativi a essa sono:
|
||||||
|
- Variazioni intrapersonali
|
||||||
|
- Similarità interpersonali
|
||||||
|
- PIE e A-PIE: posa, illuminazione ed espressione + invecchiamento
|
||||||
|
- Facilmente camuffabile: makeup, chirurgia plastica, occhiali, etc..
|
||||||
|
|
||||||
|
Steps:
|
||||||
|
- capture
|
||||||
|
- localizzazione
|
||||||
|
- cropping dei ROIs (regioni di interesse)
|
||||||
|
- normalizzazione
|
||||||
|
- feature extraction
|
||||||
|
- costruzione del template
|
||||||
|
|
||||||
|
#### Localizzazione della faccia
|
||||||
|
- Problema: data un'immagine o un video, rilevare la presenza di una o più facce e localizzarle nell'immagine
|
||||||
|
- Requisiti: deve funzionare indipendentemente da posizione, orientamento, dimensione, espressione, soggetti nell'immagine, illuminazione e sfondo.
|
||||||
|
|
||||||
|
##### Ci si può nascondere?
|
||||||
|
Secondo Adam Harvey, il punto chiave che i computer rilevano è il "nose bridge", o l'area tra gli occhi. Se si nascondono si può far credere al computer che non ci sia una faccia.
|