vault backup: 2024-10-21 00:47:19

This commit is contained in:
Marco Realacci 2024-10-21 00:47:19 +02:00
commit 8a038b7fc3
17 changed files with 430 additions and 38 deletions

View file

@ -1,20 +1,30 @@
[
"file-explorer",
"global-search",
"switcher",
"graph",
"backlink",
"canvas",
"outgoing-link",
"tag-pane",
"page-preview",
"daily-notes",
"templates",
"note-composer",
"command-palette",
"editor-status",
"bookmarks",
"outline",
"word-count",
"file-recovery"
]
{
"file-explorer": true,
"global-search": true,
"switcher": true,
"graph": true,
"backlink": true,
"canvas": true,
"outgoing-link": true,
"tag-pane": true,
"properties": false,
"page-preview": true,
"daily-notes": true,
"templates": true,
"note-composer": true,
"command-palette": true,
"slash-command": false,
"editor-status": true,
"bookmarks": true,
"markdown-importer": false,
"zk-prefixer": false,
"random-note": false,
"outline": true,
"word-count": true,
"slides": false,
"audio-recorder": false,
"workspaces": false,
"file-recovery": true,
"publish": false,
"sync": false
}

View file

@ -18,8 +18,20 @@
"source": false
}
}
},
{
"id": "62ee7b4dbafbf11b",
"type": "leaf",
"state": {
"type": "diff-view",
"state": {
"file": "Biometric Systems/notes/3. Recognition Reliability.md",
"staged": true
}
}
}
]
],
"currentTab": 1
}
],
"direction": "vertical"
@ -85,7 +97,6 @@
"state": {
"type": "backlink",
"state": {
"file": "Autonomous Networking/notes/4 WSN Routing.md",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
@ -102,7 +113,6 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "Autonomous Networking/notes/4 WSN Routing.md",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
@ -124,9 +134,7 @@
"type": "leaf",
"state": {
"type": "outline",
"state": {
"file": "Autonomous Networking/notes/4 WSN Routing.md"
}
"state": {}
}
},
{
@ -159,18 +167,29 @@
"obsidian-git:Open Git source control": false
}
},
"active": "2b2245f56092006e",
"active": "62ee7b4dbafbf11b",
"lastOpenFiles": [
"conflict-files-obsidian-git.md",
"Autonomous Networking/notes/4 WSN Routing.md",
"Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf",
"Biometric Systems/notes/4. Face recognition.md",
"Biometric Systems/images/Pasted image 20241017083943.png",
"Biometric Systems/images/Pasted image 20241017083506.png",
"Biometric Systems/images/Pasted image 20241017083255.png",
"Autonomous Networking/slides/5 Drones.pdf",
"Autonomous Networking/notes/6.1 RL.md",
"Autonomous Networking/notes/6 Internet of Things.md",
"Autonomous Networking/notes/5 Drones.md",
"Autonomous Networking/images/Pasted image 20241017161803.png",
"Autonomous Networking/images/Pasted image 20241017161747.png",
"Autonomous Networking/images/Pasted image 20241017161744.png",
"Autonomous Networking/images/Pasted image 20241017161724.png",
"Autonomous Networking/images/Pasted image 20241017154152.png",
"Foundation of data science/slides/Untitled.md",
"Biometric Systems/slides/LEZIONE3_Affidabilita_del_riconoscimento.pdf",
"Biometric Systems/notes/3. Recognition Reliability.md",
"Biometric Systems/images/Pasted image 20241016174417.png",
"Biometric Systems/images/Pasted image 20241016174411.png",
"Biometric Systems/images/Pasted image 20241016174120.png",
"Biometric Systems/images/Pasted image 20241016143112.png",
"Biometric Systems/images/Pasted image 20241016141746.png",
"Autonomous Networking/notes/3 WSN MAC.md",
"Autonomous Networking/notes/2 RFID.md",
"Foundation of data science/notes/1 CV Basics.md",
@ -181,16 +200,9 @@
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
"Biometric Systems/notes/1. Introduction.md",
"Autonomous Networking/slides/4 WSN2.pdf",
"Autonomous Networking/images/Pasted image 20241012174130.png",
"Autonomous Networking/images/Pasted image 20241012182403.png",
"Autonomous Networking/images/Pasted image 20241012175224.png",
"Autonomous Networking/slides/3 WSN.pdf",
"Autonomous Networking/slides/2 RFID.pdf",
"Foundation of data science/slides/FDS_intro_new.pdf",
"Foundation of data science/slides",
"Foundation of data science",
"Biometric Systems/images/Pasted image 20241002181936.png",
"Biometric Systems/images/Pasted image 20241002181932.png",
"BUCA/Queues.md",
"Biometric Systems/slides/lezione1 notes.md",
"prova per obsidian.md",

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

View file

@ -0,0 +1,138 @@
#### Unmanned Aerial Vehicle (UAV)
- UAV, commonly known as a Drone, is an aircraft without a human pilot aboard (unmanned or uncrewed)
- it operates
- under remote control by a human
- autonomously by on board computers
**Weight:** from 0.5g 15000kg
**Maximum speed:** up to 11265Kph
**Propellant:**
- fossil fuel
- battery
#### Usages
- can provide timely disaster warnings
- medical supplies
- dangerous situations
- traffic monitoring, wind estimation, remote sensing...
I many scenarios, UAVs need to exchange a relatively large amount of data among themselves and/or a control station. In many case there isn't any network infrastructure available. Drones can also used to expand terrestrial communication networks.
Drones can be equipped with several standard radio modules:
- Wi-Fi
- Cellular
- LPWAN (low power wide area network, es. LoRa)
## Routing
may require multi-hop data connections
#### Comparison WSN with Dronets
| | **WSN** | **Dronet** |
| ------------------ | --------------------------------- | -------------------------------- |
| **Mobility** | none or partial | high, even 3D |
| **Topology** | random, star, ad-hoc node failure | mesh |
| **Infrastructure** | absent | absent |
| **Energy source** | battery | battery (very limited) |
| **Typical use** | environmental monitoring | rescue, monitoring, surveillance |
**Goals of routing protocols:**
- increase delivery ratio
- loop freedom
- low overhead
- reduce delays
- energy consumption
- scalability
### Proactive routing protocols
Are they suitable for UAV networks?
- slow reaction to topology changes, will cause delays
- bandwidth constraints
Protocols:
- OLSR - Optimize Link State Routing
- DSDV - Destination-Sequenced Distance Vector
- B.A.T.M.A.N. - Better Approach to Mobile Ad Hoc Network
### Reactive protocols
- DSR - Dynamic Source Routing
- AODV - Ad hoc On Demand Distance Vector
#### Hybrid protocols
- ZRP - Zone Routing Protocol
- TORA - Temporarily Ordered Routing Algorithm
### B.A.T.M.A.N.
A proactive, distance-vector routing protocol for Mobile Ad-hoc Networks (MANETs) and Mesh Networks. Designed for decentralized decision-making and self-organizing networks.
**Key features:**
- decentralized routing
- no node has global knowledge of the entire network
- next-hop based
- nodes only know their best-hop neighbor for reaching a destination
- link quality driven
- decisions are based on the quality of the link between nodes
- self-healing
- adapts to changes automatically
**How batman works**
- Originator messages (OGMs):
- broadcast to announce its presence
- OGMs are forwarded by neighbors to propagate through the network
- each OGM carries a sequence number to ensure the information is up-to-date and avoid routing loops
- nodes evaluates how frequently they receive OGMs to their neighbors to determine link quality
- each node maintains a routing table with the best next-hop neighbor based on link quality
- fields inside OGM
- originator address
- sequence number
- TTL (hop limit)
- LQ (quality between the sender and the originator)
- hop count
Asimmetry problem:
If A can reach B well, B thinks it can reach A well too. But it may not be the case.
To overcome the issue there is the Transmit Quality (TQ) algorithm.
B transmits RQ (receive quality) packet to A. A counts them to know the link quality.
A knows the echo quality by counting the rebroadcasts of its own OGMs from its neighbors.
Dividing echo quality by receiving quality, A can calculate the transmit quality.
**propagation**
A when originates the OGMs, it sets TQ to 100%. The neighbor computes their own local link quality into the received TQ value and rebroadcast the packet.
- $TQ = TQ_{incoming} * TQ_{local}$
![[Pasted image 20241017154152.png]]
### Geographic protocols
the geographical position information of the nodes is utilized for forwarding decisions.
Nodes knows their position by GPS.
Geographic routing schemes don't need the entire network information
- no routing discovery
- no routing tables
- forward packet based on local information
- less overhead, bandwidth and so energy consumption
- for routing decisions a drone needs only the neighbors and destination position
Every node has coordinates of neighbors.
**Dead end problem**
several techniques have been defined in sensor networks to recover from a dead end but they are often not applicable to dronets.
Geo routing is based on three main approaches
##### Greedy forwarding
as stated before
#### Store-carry and forward
When the network is intermittently connected, forwarder nodes do not have any a solution to find a relay node. Not possible to forward any data packet to a predefined node which is not in range. So the current node will carry the packet until it meet another node or the destination target itself.
#### Prediction
based on geographical location, direction, and speed to predict the future position of a given node. They will predict the position of a next relay node.
### DGA algorithm
![[Pasted image 20241017161724.png]]
![[Pasted image 20241017161747.png]]
![[Pasted image 20241017161803.png]]

View file

@ -0,0 +1,55 @@
IoT term is used to refer to
- the resulting globlal network of connecting smart objects
- the protocols ...
- ...
required features:
- devices hetereogeneity
- scalability
- data ubiquitous data exchange
- energy-optimized solutions
#### Backscattering
- allows devices to run without battery
- only available at research level for now
- use radio frequency signals as power source
- two types
- ambient
- rfid
##### Ambient backscattering
- devices harvest power from signals available in the environment
- they use existing RF signals without requiring any additional
- Performance drawbacks
- low data rate (about 1kbps)
- not suitable for real-time applications that continuously exchange data
- availability of signals
- signal may not be available indoor or not powerful enough
##### RFID backscattering
...
##### Battery free smart home
- in a smart home there may be a lot of smart devices
- if every one of them has a battery, it's not good for the environment
- we can deploy an RFID reader with multiple antennas that covers all the different rooms
### Communication
add scheme slide
RFID tags run EPC Global Standard
- in a smart home we may want less bits dedicated to the tag id and more dedicated to the actual data
- 8 bits for ID
- 6 bits for data
- 4 for CRC
### Infrastructure based wireless networks
- base stations connected to wired backbone network
- stations choses the closest base station
- Limits
- when no infrastructure is available
- expensive/inconvenient to setup
- when there is no time to set it up

View file

@ -0,0 +1,122 @@
Case study: battery-free smart home
- each device produces a new data sample with a rate that depends on the environment and the user (continuously, event based / on demand...)
- a device should only transmit when it has new data
- but in backscattering-based networks they need to be queried by the receiver
In which order should the reader query tags?
- assume prefixed timeslots
- TDMA with random access performs poorly
- TDMA with fixed assignment also does (wasted queries)
- we want to query devices that have new data samples and avoid
- data loss
- redundant queries
Goal: design a mac protocol that adapts to all of this.
One possibility is to use Reinforcement Learning
#### Reinforcement learning
How can an intelligent agent learns to make a good sequence of decisions
- an agent can figure out how the world works by trying things and see what happens
- is what people and animals do
- we explore a computational approach to learning from interaction
- goal-directed learning from interaction
RL is learning what to do, it presents two main characteristics:
- trial and error search
- delayed reward
- sensation, action and goal are the 3 main aspects of a reinforcement learning method
- a learning agents must be able to
- sense the state of the environment
- take actions that affects the state
Difference from other ML
- no supervisor
- feedback may be delayed
- time matters
- agent action affects future decisions
- ...
- online learning
Learning online
- learning while interacting with an ever changing world
- we expect agents to get things wrong, to refine their understanding as they go
- the world is not static, agents continuously encounter new situations
RL applications:
- self driving cars
- engineering
- healthcare
- news recommendation
- ...
Rewards
- a reward is a scalar feedback signal (a number)
- reward Rt indicates how well the agent is doing at step t
- the agent should maximize cumulative reward
RL based on the reward hypotesis
all goals can be described by the maximization of expected cumulative rewards
communication in battery free environments
- positive rewards if the queried device has new data
- else negative
Challenge:
- tradeoff between exploration and exploitation
- to obtain a lot of reward a RL agent must prefer action that it tried and ...
- ...
exploration vs exploitation dilemma:
- comes from incomplete information: we need to gather enough information to make best overall decisions while keeping the risk under control
- exploitation: we take advanced of the best option we know
- exploration: test new decisions
### A general RL framework
at each timestamp the agent
- executes action
- receives observation
- receives scalar reward
the environment
...
agent state: the view of the agent on the environment state, is a function of history
- the function of the history is involved in taking the next decision
- the state representation defines what happens next
- ...
#### Inside the agent
one or more of these components
- **Policy:** agent's behavior function
- defines what to do (behavior at a given time)
- maps state to action
- core of the RL agent
- the policy is altered based on the reward
- may be
- deterministic: single function of the state
- stochastic: specifying probabilities for each actions
- reward changes probabilities
- **Value function:**
- specifies what's good in the long run
- is a prediction of future reward
- used to evaluate the goodness/badness of states
- values are prediction of rewards
- Vp(s) = Ep[yRt+1 + y^2Rt+2 ... | St = s]
- **Model:**
- predicts what the environment will do next
- many problems are model free
back to the original problem:
- n devices
- each devices produces new data with rate_i
- in which order should the reader query tags?
- formulate as an RL problem
- agent is the reder
- one action per device (query)
- rewards:
- positive when querying a device with new data
- negative if it has no data
- what to do if the device has lost data?
- state?

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

View file

@ -120,4 +120,38 @@ vedere slide per integrare formule
#### Margine
Un altro approccio è tramite il concetto di “margine”, che viene calcolato
nel seguente modo: $M(t) = |FAR(t) FRR(t)|$
notare in corrispondenza dell'ERR, si ha $M(t) = 0$
notare in corrispondenza dell'ERR, si ha $M(t) = 0$
### SRR
Cè una netta differenza tra misurare la qualità di unimmagine in input rispetto
al misurare laffidabilità di una risposta da parte del sistema.
Questultimo approccio viene chiamato indice SRR, ovvero un valore nel range [0, 1] che fornisce una misura di quanto un sistema, in fase di identificazione, riesce a separare bene soggetti genuini da soggetti impostori sulla base di un singolo probe.
Questo sistema utilizza una funzione φ che misura la quantità di “confusione” tra i possibili candidati.
Definiamo due funzioni φ
- relative distance
- density ratio
Presa la lista data in output da una fase di identificazione, si guarda nellintorno del risultato a rango 1. Se i soggetti a ranghi più bassi sono molto vicini, avremo una risposta poco affidabile, altrimenti se cè una buona distanza avremo una risposta affidabile.
Possibili esempi di φ sono:
- Relative distance
![[Pasted image 20241017083255.png]]
$$φ(p) = \frac{F (d(p, g1 )) F (d(p, g2))}{F (d(p, g|G| ))}$$
- Density ratio![[Pasted image 20241017083506.png]]
- questa funzione è meno sensibile agli "outlier", ovvero template con distanza anomalamente molto alta dal probe, e infatti performa meglio della funzione precedente
Definiamo poi φk , come quel valore che minimizza gli errori di φ(p), ovvero
i casi in cui, probe impostori hanno φ(pI) > φk e probe genuini hanno φ(pG) ≤
φk . Valori φ(p) molti distanti da φk avranno un SRR maggiore, quindi:
![[Pasted image 20241017083943.png]]
#### Template Updating
Un altro modo per aumentare la qualità e laffidabilità di un sistema è quella tramite laggiornamento dei template (evitando problemi come linvecchiamento).
Si può prendere un probe e aggiungerlo al gallery.
Questa operazione per una maggiore sicurezza deve essere fatta in soli due possibili modi:
- Supervisionata (supervised)
- Semi-supervisionata (semi-supervised)

View file

@ -0,0 +1,21 @@
I fattori più importanti di un sistema biometrico sono laccettabilità, laffidabilità e laccuratezza. l DNA, ad esempio, fornisce unalta accuratezza e affidabilità ma una bassa accettabilità, in quanto il metodo di prelievo è sicuramente intrusivo. Le impronte digitali, invece, forniscono anch'esse buone prestazioni, ma possono spesso presentarsi in modo “parziale” e inoltre sono spesso associate ai ”criminali”. Il riconoscimento facciale invece è altamente accettato, in quanto siamo abituati a farci foto e a pubblicarle, ma laccuratezza può diminuire drasticamente in casi non controllati.
Possibili problemi relativi a essa sono:
- Variazioni intrapersonali
- Similarità interpersonali
- PIE e A-PIE: posa, illuminazione ed espressione + invecchiamento
- Facilmente camuffabile: makeup, chirurgia plastica, occhiali, etc..
Steps:
- capture
- localizzazione
- cropping dei ROIs (regioni di interesse)
- normalizzazione
- feature extraction
- costruzione del template
#### Localizzazione della faccia
- Problema: data un'immagine o un video, rilevare la presenza di una o più facce e localizzarle nell'immagine
- Requisiti: deve funzionare indipendentemente da posizione, orientamento, dimensione, espressione, soggetti nell'immagine, illuminazione e sfondo.
##### Ci si può nascondere?
Secondo Adam Harvey, il punto chiave che i computer rilevano è il "nose bridge", o l'area tra gli occhi. Se si nascondono si può far credere al computer che non ci sia una faccia.