vault backup: 2025-04-01 08:59:49
This commit is contained in:
parent
dc23bc5c16
commit
97ab8ac477
1 changed files with 7 additions and 1 deletions
|
@ -39,4 +39,10 @@ If A wait-free implements binary consensus for n processes, then there exists a
|
|||
Assume by contradiction A wait-free, with processes p and q.
|
||||
|
||||
By the previous result, it has an initial bivalent configuration C
|
||||
- let S be a sequence of operations s.t. C’ = S(C) is maximally bivalent (i.e., p(S(C)) is 0-valent and q(S(C)) is 1-valent, or viceversa)
|
||||
- let S be a sequence of operations s.t. C’ = S(C) is maximally bivalent (i.e., p(C') is 0-valent and q(C') is 1-valent, or viceversa)
|
||||
- partendo da C' posso ancora avere due possibili computazioni dove una decide 0 e una decide 1, ma è l'ultima configurazione in cui è possibile. Quelle successive sono monovalenti.
|
||||
|
||||
p(C’) can be R1.read() or R1.write(v) and q(C’) can be R2.read() or R2.write(v’)
|
||||
|
||||
1. if R1 != R2
|
||||
- Whatever operations p and q issue, we have that q(p(C’)) = p(q(C’)) But q(p(C’)) is 0-val (because p(C’) is) whereas p(q(C’)) is 1-val
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue