vault backup: 2025-04-28 08:42:04
This commit is contained in:
parent
4e8e16e924
commit
9b50fc51be
3 changed files with 16 additions and 1 deletions
|
@ -24,4 +24,18 @@ $\approx$ is a
|
|||
1. equivalence
|
||||
2. congruence
|
||||
3. weak bisimulation
|
||||
4. $\sim a$
|
||||
4. $\sim \subset \approx$
|
||||
|
||||
#### Examples of weakly bisimilar processes
|
||||

|
||||
|
||||
**Theorem:** given any process P and any sum M, N, then:
|
||||
1. $P \approx \tau.{P}$
|
||||
2. $M+N+\tau.N \approx M + \tau.N$
|
||||
3. $M+\alpha.P+\alpha.(N+\tau.P) \approx M + \alpha.(N + \tau.P)$
|
||||
|
||||
*Proof:*
|
||||
take the symmetric closure of the following relations, that can be easily shown to be weak simulations:
|
||||
1. $S = \{ P,\tau.P \}\cup Id$
|
||||
2. $S=\{ M+N+\tau.N,M+\tau.N \}\cup Id$
|
||||
3. $S=\\{ (M+\alpha.P+) \}$
|
Loading…
Add table
Add a link
Reference in a new issue