vault backup: 2025-04-15 09:15:18
This commit is contained in:
parent
8b70e07800
commit
9d267c95ed
1 changed files with 4 additions and 1 deletions
|
@ -61,4 +61,7 @@ where M denotes a sum.
|
|||
An equivalence relation $R$ is a congruence if and only if
|
||||
$$\forall (P, Q) \in R, \forall C.(C[P], C[Q]) \in R$$
|
||||
Is bisimilarity a congruence? Yes.
|
||||
$$$$
|
||||
**Theorem:**
|
||||
$$if \space P ∼ Q \space then \space \forall C.C[P] ∼ C[Q]$$
|
||||
|
||||
Proof on the slides.
|
Loading…
Add table
Add a link
Reference in a new issue