vault backup: 2024-10-25 09:24:27
63
.obsidian/workspace.json
vendored
|
@ -4,41 +4,39 @@
|
||||||
"type": "split",
|
"type": "split",
|
||||||
"children": [
|
"children": [
|
||||||
{
|
{
|
||||||
"id": "381b669928317be4",
|
"id": "92983280ad25c0d4",
|
||||||
"type": "tabs",
|
"type": "tabs",
|
||||||
"children": [
|
"children": [
|
||||||
{
|
{
|
||||||
"id": "aca070766b645da2",
|
"id": "ecad7b7424be569c",
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "markdown",
|
"type": "markdown",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Biometric Systems/notes/4. Face recognition.md",
|
"file": "q&a.md",
|
||||||
"mode": "source",
|
"mode": "source",
|
||||||
"source": false
|
"source": false
|
||||||
},
|
},
|
||||||
"icon": "lucide-file",
|
"icon": "lucide-file",
|
||||||
"title": "4. Face recognition"
|
"title": "q&a"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "1444840efdc58de5",
|
"id": "ba82a2242fc4a714",
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "pdf",
|
"type": "markdown",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Biometric Systems/slides/LEZIONE5_NEW_More about face localization.pdf",
|
"file": "Autonomous Networking/notes/7 RL.md",
|
||||||
"page": 59,
|
"mode": "source",
|
||||||
"left": -22,
|
"source": false
|
||||||
"top": 260,
|
|
||||||
"zoom": 0.675
|
|
||||||
},
|
},
|
||||||
"icon": "lucide-file-text",
|
"icon": "lucide-file",
|
||||||
"title": "LEZIONE5_NEW_More about face localization"
|
"title": "7 RL"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"stacked": true
|
"currentTab": 1
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"direction": "vertical"
|
"direction": "vertical"
|
||||||
|
@ -94,8 +92,7 @@
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"direction": "horizontal",
|
"direction": "horizontal",
|
||||||
"width": 300,
|
"width": 300
|
||||||
"collapsed": true
|
|
||||||
},
|
},
|
||||||
"right": {
|
"right": {
|
||||||
"id": "11560c155f3d8f6e",
|
"id": "11560c155f3d8f6e",
|
||||||
|
@ -195,21 +192,26 @@
|
||||||
"obsidian-git:Open Git source control": false
|
"obsidian-git:Open Git source control": false
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"active": "aca070766b645da2",
|
"active": "ba82a2242fc4a714",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
"Biometric Systems/slides/LEZIONE5_NEW_More about face localization.pdf",
|
"Pasted image 20241023140250.png",
|
||||||
"Biometric Systems/notes/4. Face recognition.md",
|
"Pasted image 20241023135924.png",
|
||||||
"Pasted image 20241024100002.png",
|
"Pasted image 20241023135125.png",
|
||||||
"Pasted image 20241024095704.png",
|
"Pasted image 20241023133231.png",
|
||||||
"Pasted image 20241024094223.png",
|
"q&a.md",
|
||||||
"Pasted image 20241024093000.png",
|
"Autonomous Networking/notes/3 WSN MAC.md",
|
||||||
"Pasted image 20241024092903.png",
|
"8.md",
|
||||||
"Pasted image 20241024092146.png",
|
"Autonomous Networking/slides/AutonomousNet-Class11-2122-Performance_of_action_selection_methods_UCB.pdf",
|
||||||
"Pasted image 20241024091511.png",
|
"Pasted image 20241025090625.png",
|
||||||
"Pasted image 20241024091446.png",
|
"Pasted image 20241025090549.png",
|
||||||
"Pasted image 20241024091433.png",
|
"Pasted image 20241025090344.png",
|
||||||
"Pasted image 20241024091235.png",
|
"Pasted image 20241025085759.png",
|
||||||
|
"Pasted image 20241025085512.png",
|
||||||
|
"Pasted image 20241025085237.png",
|
||||||
|
"Pasted image 20241025084938.png",
|
||||||
"Autonomous Networking/notes/7 RL.md",
|
"Autonomous Networking/notes/7 RL.md",
|
||||||
|
"Biometric Systems/notes/4. Face recognition.md",
|
||||||
|
"Biometric Systems/slides/LEZIONE5_NEW_More about face localization.pdf",
|
||||||
"Autonomous Networking/slides/7 RL1.pdf",
|
"Autonomous Networking/slides/7 RL1.pdf",
|
||||||
"Autonomous Networking/notes/6 Internet of Things.md",
|
"Autonomous Networking/notes/6 Internet of Things.md",
|
||||||
"Autonomous Networking/slides/6 IoT.pdf",
|
"Autonomous Networking/slides/6 IoT.pdf",
|
||||||
|
@ -218,7 +220,6 @@
|
||||||
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
|
||||||
"Biometric Systems/notes/3. Recognition Reliability.md",
|
"Biometric Systems/notes/3. Recognition Reliability.md",
|
||||||
"Autonomous Networking/notes/4 WSN Routing.md",
|
"Autonomous Networking/notes/4 WSN Routing.md",
|
||||||
"Autonomous Networking/notes/3 WSN MAC.md",
|
|
||||||
"Autonomous Networking/notes/2 RFID.md",
|
"Autonomous Networking/notes/2 RFID.md",
|
||||||
"Foundation of data science/notes/1 CV Basics.md",
|
"Foundation of data science/notes/1 CV Basics.md",
|
||||||
"conflict-files-obsidian-git.md",
|
"conflict-files-obsidian-git.md",
|
||||||
|
@ -229,7 +230,6 @@
|
||||||
"Foundation of data science/slides/Untitled.md",
|
"Foundation of data science/slides/Untitled.md",
|
||||||
"Autonomous Networking/slides/4 WSN2.pdf",
|
"Autonomous Networking/slides/4 WSN2.pdf",
|
||||||
"Autonomous Networking/notes/4 WSN pt. 2.md",
|
"Autonomous Networking/notes/4 WSN pt. 2.md",
|
||||||
"Foundation of data science/notes",
|
|
||||||
"Biometric Systems/notes/1. Introduction.md",
|
"Biometric Systems/notes/1. Introduction.md",
|
||||||
"Autonomous Networking/notes/3 WSN.md",
|
"Autonomous Networking/notes/3 WSN.md",
|
||||||
"BUCA/Queues.md",
|
"BUCA/Queues.md",
|
||||||
|
@ -240,7 +240,6 @@
|
||||||
"[LEZIONE2_Indici_di_prestazione.pdf.md",
|
"[LEZIONE2_Indici_di_prestazione.pdf.md",
|
||||||
"Biometric Systems/final notes/1. Introduction.md",
|
"Biometric Systems/final notes/1. Introduction.md",
|
||||||
"Foundation of data science/slides/notes 2.md",
|
"Foundation of data science/slides/notes 2.md",
|
||||||
"Biometric Systems/slides/lezione1 notes.md",
|
|
||||||
"Untitled.canvas"
|
"Untitled.canvas"
|
||||||
]
|
]
|
||||||
}
|
}
|
75
8.md
Normal file
|
@ -0,0 +1,75 @@
|
||||||
|
### The 10-arms testbed
|
||||||
|
- we compare different strategies to assess the relative effectiveness
|
||||||
|
- 10 actions along the X axis
|
||||||
|
- Y axis shows the distribution of rewards
|
||||||
|
|
||||||
|
- Each reward is sampled from a normal distribution with some mean q*(a) and variance=1
|
||||||
|
- Each q*(a) is drawn from a normal distribution with mean=0 and variance=1
|
||||||
|
![[Pasted image 20241025084609.png]]
|
||||||
|
|
||||||
|
- q* is randomly sampled from a normal distribution
|
||||||
|
- rewards are randomly sampled based on q
|
||||||
|
- actions are randomly taken on exploration steps
|
||||||
|
- to fairly compare different methods we need to perform many independent run
|
||||||
|
- for any learning method we measure its performance over 2000 independent runs
|
||||||
|
|
||||||
|
![[Pasted image 20241025084755.png]]
|
||||||
|
|
||||||
|
.. add siled ...
|
||||||
|
![[Pasted image 20241025084830.png]]
|
||||||
|
|
||||||
|
#### Experiments
|
||||||
|
- run experiments for different epsilons
|
||||||
|
- 0
|
||||||
|
- 0.01
|
||||||
|
- 0.1
|
||||||
|
|
||||||
|
![[Pasted image 20241025084938.png]]
|
||||||
|
- exploring more I find the best actions
|
||||||
|
- exploring less it will converge slowly
|
||||||
|
- not exploring may never find the best action(s)
|
||||||
|
|
||||||
|
Let's do the same experiment starting with optimistic initial values
|
||||||
|
- we start with a high value for the rewards
|
||||||
|
- we set q1(a) = +5 for all actions
|
||||||
|
![[Pasted image 20241025085237.png]]
|
||||||
|
as we can see, the system explores more at the beginning, which is good as it will find the best actions to take sooner!
|
||||||
|
|
||||||
|
**Optimistic initial value method:**
|
||||||
|
- explores more at the beginning
|
||||||
|
- only effective for stationary problems
|
||||||
|
- for non-stationary problems we have to use eps-greedy
|
||||||
|
|
||||||
|
### Optimism in the Face of Uncertainty
|
||||||
|
- ...
|
||||||
|
- easy problem:
|
||||||
|
- two arms, one always good and one always bad
|
||||||
|
- try both and done
|
||||||
|
- hard problem:
|
||||||
|
- arm much better than other one but there is much noise
|
||||||
|
- takes really long time to disambiguate
|
||||||
|
|
||||||
|
![[Pasted image 20241025085759.png]]
|
||||||
|
which actions should we peek?
|
||||||
|
- greedy would peek the green one
|
||||||
|
- eps-greedy too
|
||||||
|
- optimism in the face of uncertainty says:
|
||||||
|
- the more uncertain we are about an action-value, the more it is to explore that action, as it could turn out to be the best!
|
||||||
|
- principle: *do not take the arm you believe is best, take the one which has the most potential to be the best*
|
||||||
|
|
||||||
|
![[Pasted image 20241025090344.png]]
|
||||||
|
the brackets represent a confidence interval around q*(a). The system is confident that the value lies somewhere in the region.
|
||||||
|
|
||||||
|
If region is very small, we are very certain!
|
||||||
|
|
||||||
|
![[Pasted image 20241025090549.png]]
|
||||||
|
In this situation we chose Q2 as estimated value is the highest.
|
||||||
|
|
||||||
|
#### Action selection
|
||||||
|
![[Pasted image 20241025090625.png]]
|
||||||
|
... check slides for formula explaination ...
|
||||||
|
|
||||||
|
|
||||||
|
- to systematically reduce uncertainity, UCB explores more at the beginning
|
||||||
|
- UCB's exploration reduces over time, eps-greedy continues to take a random action 10% of the time
|
||||||
|
|
BIN
Pasted image 20241025084609.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
Pasted image 20241025084755.png
Normal file
After Width: | Height: | Size: 75 KiB |
BIN
Pasted image 20241025084830.png
Normal file
After Width: | Height: | Size: 83 KiB |
BIN
Pasted image 20241025084938.png
Normal file
After Width: | Height: | Size: 80 KiB |
BIN
Pasted image 20241025085237.png
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
Pasted image 20241025085512.png
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
Pasted image 20241025085759.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
Pasted image 20241025090344.png
Normal file
After Width: | Height: | Size: 8.4 KiB |
BIN
Pasted image 20241025090549.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
Pasted image 20241025090625.png
Normal file
After Width: | Height: | Size: 31 KiB |
4
q&a.md
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
- explain the problem of energy consumption in sensor networks
|
||||||
|
As sensor run on batteries, energy consumption is a serious problem as we want sensors' batteries to last as long as possible. To achieve a low energy consumption is very important to define good MAC and routing strategies.
|
||||||
|
For MAC we can use protocols such as S-MAC, allows sensor to sleep most of the time when they are not communicating.
|
||||||
|
S-MAC
|