vault backup: 2025-04-14 17:10:00
This commit is contained in:
parent
7227bcbc96
commit
a8929fe551
2 changed files with 6 additions and 11 deletions
|
@ -130,18 +130,13 @@ $$A' \mid B \xrightarrow{\tau} A \mid B'$$
|
|||
|
||||
##### ▶️ Step 3: Transition from B'
|
||||
From the definition:
|
||||
- $BB' \triangleq \bar{c}.B$
|
||||
- So: B′→cˉBB' \xrightarrow{\bar{c}} B
|
||||
- $B' \triangleq \bar{c}.B$
|
||||
- So: $B' \xrightarrow{\bar{c}} B$
|
||||
|
||||
Now use the **right parallel rule**:
|
||||
|
||||
B′→cˉBA∣B′→cˉA∣B\frac{B' \xrightarrow{\bar{c}} B}{A \mid B' \xrightarrow{\bar{c}} A \mid B}
|
||||
|
||||
$$\frac{B' \xrightarrow{\bar{c}} B}{A \mid B' \xrightarrow{\bar{c}} A \mid B}$$
|
||||
✅ **Third transition:**
|
||||
|
||||
A∣B′→cˉA∣BA \mid B' \xrightarrow{\bar{c}} A \mid B
|
||||
|
||||
---
|
||||
$$A \mid B' \xrightarrow{\bar{c}} A \mid B$$
|
||||
|
||||
## 🔄 Full Transition Path
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue