From b79e6352be12a43d9a420d3542d87fde9cf747d0 Mon Sep 17 00:00:00 2001 From: Marco Realacci Date: Sat, 18 Jan 2025 00:20:19 +0100 Subject: [PATCH] vault backup: 2025-01-18 00:20:19 --- .obsidian/workspace.json | 8 ++++---- Foundation of data science/notes/9 Random Forest.md | 4 ++-- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/.obsidian/workspace.json b/.obsidian/workspace.json index 24c83b1..52fe9ab 100644 --- a/.obsidian/workspace.json +++ b/.obsidian/workspace.json @@ -13,12 +13,12 @@ "state": { "type": "markdown", "state": { - "file": "Foundation of data science/notes/9 Gradient Boosting.md", + "file": "Foundation of data science/notes/9 Decision tree.md", "mode": "source", "source": false }, "icon": "lucide-file", - "title": "9 Gradient Boosting" + "title": "9 Decision tree" } }, { @@ -254,7 +254,9 @@ }, "active": "1fb39a1dfc7b5200", "lastOpenFiles": [ + "Foundation of data science/notes/9 K-Nearest Neighbors.md", "Foundation of data science/notes/9 XGBoost.md", + "Foundation of data science/notes/9 Random Forest.md", "Foundation of data science/notes/9 Gradient Boosting.md", "Biometric Systems/notes/8 Face anti spoofing.md", "Biometric Systems/notes/3. Recognition Reliability.md", @@ -286,8 +288,6 @@ "Foundation of data science/notes/1 CV Basics.md", "Foundation of data science/slides/More on Neural Networks (1).pdf", "Foundation of data science/slides/Normal_equation_poly_lwr.pdf", - "Foundation of data science/notes/9 Random Forest.md", - "Foundation of data science/notes/9 K-Nearest Neighbors.md", "Foundation of data science/slides/binary_classification.pdf", "Biometric Systems/images/Pasted image 20241228171617.png", "Biometric Systems/images/Pasted image 20241228174722.png", diff --git a/Foundation of data science/notes/9 Random Forest.md b/Foundation of data science/notes/9 Random Forest.md index f942d0e..e6674ff 100644 --- a/Foundation of data science/notes/9 Random Forest.md +++ b/Foundation of data science/notes/9 Random Forest.md @@ -73,8 +73,8 @@ L'algoritmo costruisce molti alberi decisionali su sottoinsiemi casuali del data ### **Complessità Computazionale** - **Training:** - Per un singolo albero: $O(d \cdot n \log n)$, dove dd è il numero di feature e nn il numero di campioni. - Con TT alberi: $O(T \cdot d \cdot n \log n)$. + Per un singolo albero: $O(d \cdot n \log n)$, dove d è il numero di feature e n il numero di campioni. + Con T alberi: $O(T \cdot d \cdot n \log n)$. - **Predizione:** Predire su un campione richiede $O(T \cdot \text{depth})$, dove la profondità ($\text{depth}$) è proporzionale a $\log n$.