vault backup: 2024-12-31 01:47:41

This commit is contained in:
Marco Realacci 2024-12-31 01:47:41 +01:00
parent 9fc8ae474f
commit c4a223f25d
2 changed files with 60 additions and 14 deletions

View file

@ -29,12 +29,28 @@
"state": { "state": {
"type": "markdown", "type": "markdown",
"state": { "state": {
"file": "Foundation of data science/notes/3.1 Multi Class Logistic Regression.md", "file": "Biometric Systems/notes/13. Multi biometric.md",
"mode": "source", "mode": "source",
"source": false "source": false
}, },
"icon": "lucide-file", "icon": "lucide-file",
"title": "3.1 Multi Class Logistic Regression" "title": "13. Multi biometric"
}
},
{
"id": "2854bd3b52a5b340",
"type": "leaf",
"state": {
"type": "pdf",
"state": {
"file": "Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
"page": 14,
"left": -8,
"top": 477,
"zoom": 1.9210084033613448
},
"icon": "lucide-file-text",
"title": "LEZIONE12_MULBIOMETRIC"
} }
}, },
{ {
@ -44,9 +60,9 @@
"type": "pdf", "type": "pdf",
"state": { "state": {
"file": "Biometric Systems/slides/LEZIONE9_Ear recognition.pptx.pdf", "file": "Biometric Systems/slides/LEZIONE9_Ear recognition.pptx.pdf",
"page": 17, "page": 8,
"left": -153, "left": -153,
"top": 845, "top": 5,
"zoom": 1.3 "zoom": 1.3
}, },
"icon": "lucide-file-text", "icon": "lucide-file-text",
@ -226,19 +242,20 @@
}, },
"active": "dee6b7fc799ba9d4", "active": "dee6b7fc799ba9d4",
"lastOpenFiles": [ "lastOpenFiles": [
"Biometric Systems/slides/LEZIONE12_MULBIOMETRIC.pdf",
"Biometric Systems/notes/13. Multi biometric.md",
"Biometric Systems/slides/LEZIONE9_Ear recognition.pptx.pdf",
"Foundation of data science/notes/3.1 Multi Class Logistic Regression.md",
"Foundation of data science/notes/4 L1 and L2 normalization - Lasso and Ridge.md", "Foundation of data science/notes/4 L1 and L2 normalization - Lasso and Ridge.md",
"Foundation of data science/notes/3 Logistic Regression.md", "Foundation of data science/notes/3 Logistic Regression.md",
"Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf", "Biometric Systems/slides/LEZIONE4_Face introduction and localization.pdf",
"Biometric Systems/slides/Biometric_System___Notes.pdf", "Biometric Systems/slides/Biometric_System___Notes.pdf",
"Biometric Systems/slides/LEZIONE9_Ear recognition.pptx.pdf",
"Foundation of data science/slides/multiclass_crossentropy_biasvariance.pdf", "Foundation of data science/slides/multiclass_crossentropy_biasvariance.pdf",
"Foundation of data science/notes/3.1 Multi Class Logistic Regression.md",
"Foundation of data science/slides/binary_classification.pdf", "Foundation of data science/slides/binary_classification.pdf",
"Foundation of data science/slides/FDS_linear_regression_w_notes.pdf", "Foundation of data science/slides/FDS_linear_regression_w_notes.pdf",
"Foundation of data science/slides/IP CV Basics.pdf", "Foundation of data science/slides/IP CV Basics.pdf",
"Foundation of data science/slides/FDS_intro_new.pdf", "Foundation of data science/slides/FDS_intro_new.pdf",
"Foundation of data science/slides/Variational Autoencoders.pdf", "Foundation of data science/slides/Variational Autoencoders.pdf",
"Foundation of data science/slides/Traditional discriminative approaches.pdf",
"Biometric Systems/images/Pasted image 20241228171617.png", "Biometric Systems/images/Pasted image 20241228171617.png",
"Biometric Systems/images/Pasted image 20241228174722.png", "Biometric Systems/images/Pasted image 20241228174722.png",
"Biometric Systems/notes/4. Face detection.md", "Biometric Systems/notes/4. Face detection.md",
@ -247,7 +264,6 @@
"Biometric Systems/notes/8 Face anti spoofing.md", "Biometric Systems/notes/8 Face anti spoofing.md",
"Biometric Systems/notes/7. Face recognition 3D.md", "Biometric Systems/notes/7. Face recognition 3D.md",
"Biometric Systems/notes/12. Iris recognition.md", "Biometric Systems/notes/12. Iris recognition.md",
"Biometric Systems/notes/13. Multi biometric.md",
"Biometric Systems/notes/2. Performance indexes.md", "Biometric Systems/notes/2. Performance indexes.md",
"Biometric Systems/notes/3. Recognition Reliability.md", "Biometric Systems/notes/3. Recognition Reliability.md",
"Biometric Systems/notes/9. Ear recognition.md", "Biometric Systems/notes/9. Ear recognition.md",

View file

@ -41,18 +41,37 @@ example: use SIFT (scalar invariant feature transform)
Phases: Phases:
- feature extraction (SIFT feature set) - feature extraction (SIFT feature set)
- feature normalization: required due to the possible significant differences in the scale of the vector values - feature normalization: required due to the possible significant differences in the scale of the vector values
- si crea un vettore solo composto dai due feature vector
Problems to address: Problems to address:
- feature selection / reduction (complete with slide) - **feature selection / reduction**
- matching - è più efficiente scegliere poche feature rispetto all'intero vettore, si possono usare tecniche come
- **clutering k-means** mantenendo solo i centri dei cluster
- performed after linking the two normalized vectors
- **neighborhood elimination**
- points at a certain distance are eliminated
- performed before linking, on the single vectors
- **points belonging to specific regions**
- only points in specific regions of the train (e.g. face, nose, mouth...) are maintained
- **matching**
- **point pattern matching**
- method to find the number of paired "points" between the probe vector and the gallery one
- two points are paired if their distance is smaller than a threshold
##### Feature level fusion: parallel ##### Feature level fusion: parallel
parallel combination of the two vectors: parallel combination of the two vectors:
- vector normalization (shorter should be extended if size is different) - **vector normalization**
- pre-processing of vectors: weighted combination through the coefficient $\theta$ - shorter vector is extended to match the size of the other one
- further feature processing: PCA, L-L expansion, LDA - e.g. zero-padding
- **pre-processing of vectors
- step 1: transform vectors in unitary vectors (dividing them by their L2 norm)
- step 2: weighted combination through the coefficient $\theta$, based on the lenght of X and Y
- we can then use X as the real part and Y as the imaginary part of the final vector
- **further feature processing:*
- using linear techniques like PCA, L-L expansion, LDA
add CCA ##### Feature level fusion: CCA
The idea is to find a pair of transformations that maximizes the correlation between characteristics
#### Score level fusion #### Score level fusion
![[Pasted image 20241212085003.png]] ![[Pasted image 20241212085003.png]]
@ -124,13 +143,24 @@ Normalization functions:
![[Pasted image 20241212094046.png|300]] ![[Pasted image 20241212094046.png|300]]
The Min-max normalization technique performs a “mapping” (shifting + compression/dilation) of the interval between the minimum and maximum values in the interval between 0 and 1 The Min-max normalization technique performs a “mapping” (shifting + compression/dilation) of the interval between the minimum and maximum values in the interval between 0 and 1
Pro: range tra 0 e 1
Contro: bisogna conoscere minimo e massimo dello score di ogni sottosistema
![[Pasted image 20241212093902.png|200]] ![[Pasted image 20241212093902.png|200]]
Standardizzazione per media e varianza, ampiamente usato
contro: non porta lo score in un range fisso
![[Pasted image 20241212093927.png|200]] ![[Pasted image 20241212093927.png|200]]
median/MAD: si sottrae la mediana e si divide per la mediana dei valori assoluti
funziona male se la distribuzione degli score non è gaussiana. Non preserva la distribuzione originale e non garantisce nemmeno un range fisso :/
![[Pasted image 20241212093943.png|200]] ![[Pasted image 20241212093943.png|200]]
Sigmoide: porta nell'intervallo aperto (0, 1)
contro 1: verso gli estremi distorce parecchio
contro 2: dipende dai parametri k e c che dipendono a sua volta dalla distribuzione degli score
![[Pasted image 20241212094000.png|200]] ![[Pasted image 20241212094000.png|200]]
Tanh: garantisce range (0, 1)
contro: tende a concentrare eccessivamente i valori verso il centro (0.5).
![[Pasted image 20241212094016.png|200]] ![[Pasted image 20241212094016.png|200]]