diff --git a/Concurrent Systems/notes/8 - Enhancing Liveness Properties.md b/Concurrent Systems/notes/8 - Enhancing Liveness Properties.md index 641c9f6..4cdb4b3 100644 --- a/Concurrent Systems/notes/8 - Enhancing Liveness Properties.md +++ b/Concurrent Systems/notes/8 - Enhancing Liveness Properties.md @@ -59,8 +59,10 @@ It can be proved that there exists no wait-free implementation of $\Omega$ in an 2. let t be an upper bound on the number of possible failing processes and f the real number of process failed (hence, $0\leq f\leq t\leq n-1$, with f unknown and t known in advance). Then, there are at least $t-f$ correct processes different from $p_L$ with a timer s.t. $\exists$ time $\tau_{2}$ for each time interval $\delta$, if their timer is set to $\delta$ after $\tau_{2}$, it expires at least after $\delta$. + (stiamo dicendo che il timer scade sicuramente dopo $\delta$, il che ci permette di non considerare erroneamente come fallito il processo. Perché non esattamente a $\delta$? Perché è un sistema asincrono e non c'è un clock globale) -REMARK: $\tau_{1}, \tau_{2}, \nabla$ and $p_L$ are all unknown. +>[!warning] Remark + $\tau_{1}, \tau_{2}, \nabla$ and $p_L$ are all unknown :/ IDEA: - `PROGRESS[1..n]` is an array of SWMR atomic registers used by proc’s to signal that they’re alive