vault backup: 2024-10-13 18:35:54

This commit is contained in:
Marco Realacci 2024-10-13 18:35:54 +02:00
parent 55c9583ae6
commit e8f00d0c55
3 changed files with 3 additions and 62 deletions

View file

@ -161,8 +161,10 @@
},
"active": "8d8de4cd4c80f0f8",
"lastOpenFiles": [
"Biometric Systems/notes/2. Performance indexes.md",
"Foundation of data science/slides/notes 2.md",
"Foundation of data science/slides/Untitled.md",
"Foundation of data science/notes/1 CV Basics.md",
"Biometric Systems/notes/2. Performance indexes.md",
"Foundation of data science/notes",
"Biometric Systems/slides/LEZIONE2_Indici_di_prestazione.pdf",
"Biometric Systems/notes/1. Introduction.md",
@ -175,8 +177,6 @@
"Autonomous Networking/slides/3 WSN.pdf",
"conflict-files-obsidian-git.md",
"Autonomous Networking/slides/2 RFID.pdf",
"Foundation of data science/slides/notes 2.md",
"Foundation of data science/slides/Untitled.md",
"Foundation of data science/slides/FDS_intro_new.pdf",
"Foundation of data science/slides",
"Foundation of data science",

View file

@ -1,12 +0,0 @@
$$f[[m,n]+[m^{\prime},n^{\prime}]]=f\left\lbrack m+m^{\prime},n+n^{\prime}\right\rbrack=f\left\lbrack m,n\right\rbrack+f\left\lbrack m^{\prime},n^{\prime}\right\rbrack
$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[m-k,n-l]g[k,l]}+\sum_{k,l}{I[m'-k,n'-l]g[k,l]}$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[m-k,n-l]g[k,l] + I[m'-k,n'-l]g[k,l]}$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{(I[m-k,n-l] + I[m'-k,n'-l])g[k,l]}$$
$$\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}=\sum_{k,l}{I[(m+m')-k,(n+n')-l]g[k,l]}$$

View file

@ -1,47 +0,0 @@
#### Object recognition
Different types of recognition
- object identification
- object classification
##### Which level is right for Object Classes?
- Basic-Level Categories
###### Challenges
- multi-view: different view points
- multi-class: different types of the same object (different car models)
- varying illumination
- ecc
### Filtering basics
- Linear filtering
- Gaussian filtering
- Multi scale image representation
- gaussian pyramid
- edge detection
- recognition using line drawings
- image derivatives (1st and 2nd order)
- object instance identification using color histograms
- performing evaluation
probabilità dadi
$Px(5) = 1/6$
$Py(5) = 1/6$
$Px+y(5) = ?$
We can count the possible cases
total cases: $6*6=36$
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| --- | --- | --- | --- | --- | --- | --- |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| | 1 | 2 | 3 | 4 | 5 | 6 |
possible cases: $P(3)P(1)+P(2)P(2)+P(1)P(3)$
$P[x*y](S) = $