From ea5cb2e77625a9c429e68a0c980f07e5262b46bb Mon Sep 17 00:00:00 2001 From: Marco Realacci Date: Mon, 14 Apr 2025 12:14:53 +0200 Subject: [PATCH] vault backup: 2025-04-14 12:14:53 --- Concurrent Systems/notes/11 - LTSs and Bisimulation.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/Concurrent Systems/notes/11 - LTSs and Bisimulation.md b/Concurrent Systems/notes/11 - LTSs and Bisimulation.md index 7eec1ba..b26a90a 100644 --- a/Concurrent Systems/notes/11 - LTSs and Bisimulation.md +++ b/Concurrent Systems/notes/11 - LTSs and Bisimulation.md @@ -100,6 +100,8 @@ So, (p', q') ∈ ∼ *Proof:* Let (p,q) ∈ S. Then, there exists a bisimulation that contains the pair (p, q); thus, (p, q) ∈ ∼. +## La parte difficile + ![](../../Pasted%20image%2020250414091521.png)