From f8a2d4a2d68a4c322f72946f6c12d455ef13aa44 Mon Sep 17 00:00:00 2001 From: Marco Realacci Date: Tue, 15 Apr 2025 16:15:01 +0200 Subject: [PATCH] vault backup: 2025-04-15 16:15:01 --- .obsidian/workspace.json | 6 +++--- Concurrent Systems/notes/12b - CCS cose varie.md | 4 ++-- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.obsidian/workspace.json b/.obsidian/workspace.json index 5a53c98..5ce5b0a 100644 --- a/.obsidian/workspace.json +++ b/.obsidian/workspace.json @@ -41,12 +41,12 @@ "state": { "type": "markdown", "state": { - "file": "Concurrent Systems/notes/12 - Calculus of communicating system.md", + "file": "Concurrent Systems/notes/12b - CCS cose varie.md", "mode": "source", "source": false }, "icon": "lucide-file", - "title": "12 - Calculus of communicating system" + "title": "12b - CCS cose varie" } } ], @@ -221,8 +221,8 @@ }, "active": "a222ab88db5cfdd0", "lastOpenFiles": [ - "Concurrent Systems/notes/11 - LTSs and Bisimulation.md", "Concurrent Systems/notes/12 - Calculus of communicating system.md", + "Concurrent Systems/notes/11 - LTSs and Bisimulation.md", "Concurrent Systems/notes/10 - Implementing Consensus.md", "Concurrent Systems/notes/12b - CCS cose varie.md", "Concurrent Systems/slides/class 12.pdf", diff --git a/Concurrent Systems/notes/12b - CCS cose varie.md b/Concurrent Systems/notes/12b - CCS cose varie.md index 472ff5b..03f0efa 100644 --- a/Concurrent Systems/notes/12b - CCS cose varie.md +++ b/Concurrent Systems/notes/12b - CCS cose varie.md @@ -2,10 +2,10 @@ An n-ary semaphore S(n)(p,v) is a process used to ensure that there are no more The specification of a unary semaphore is the following: $$S^{(1)} \triangleq p \cdot S_{1}^{(1)}$$ -$$S_{1}^{(1)} \triangleq p \cdot S_{1}^{(1)}$$ +$$S_{1}^{(1)} \triangleq p \cdot S_{}^{(1)}$$ The specification of a binary semaphore is the following: $$S_{}^{(2)} \triangleq p \cdot S_{1}^{(2)}$$ -$$S_{1}^{(2)} \triangleq p \cdot S_{1}^{(2)}+v\cdot S^{(2)}$$ +$$S_{1}^{(2)} \triangleq p \cdot S_{2}^{(2)}+v\cdot S^{(2)}$$ $$S_{2}^{(2)} \triangleq v \cdot S_{1}^{(2)}$$ If we consider S(2) as the specification of the expected behavior of a binary semaphore and S(1) | S(1) as its concrete implementation, we can show that $$S^{(1)}|S^{(1)} \space \textasciitilde \space S^{2}$$