vault backup: 2025-04-14 12:19:53
This commit is contained in:
parent
ea5cb2e776
commit
f8d837fa43
1 changed files with 0 additions and 1 deletions
|
@ -99,7 +99,6 @@ So, (p', q') ∈ ∼
|
||||||
**Theorem:** For every bisimulation S, it holds that S ⊆ ∼.
|
**Theorem:** For every bisimulation S, it holds that S ⊆ ∼.
|
||||||
*Proof:*
|
*Proof:*
|
||||||
Let (p,q) ∈ S. Then, there exists a bisimulation that contains the pair (p, q); thus, (p, q) ∈ ∼.
|
Let (p,q) ∈ S. Then, there exists a bisimulation that contains the pair (p, q); thus, (p, q) ∈ ∼.
|
||||||
|
|
||||||
## La parte difficile
|
## La parte difficile
|
||||||
|
|
||||||

|

|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue