vault backup: 2024-11-04 18:52:44
This commit is contained in:
commit
fb6a620724
11 changed files with 177 additions and 45 deletions
4
.obsidian/plugins/companion/data.json
vendored
4
.obsidian/plugins/companion/data.json
vendored
|
@ -13,12 +13,16 @@
|
||||||
"min_display_length": 50,
|
"min_display_length": 50,
|
||||||
"retrigger_threshold": 48
|
"retrigger_threshold": 48
|
||||||
},
|
},
|
||||||
|
<<<<<<< HEAD
|
||||||
"provider_settings": {
|
"provider_settings": {
|
||||||
"ollama": {
|
"ollama": {
|
||||||
"settings": "{\"endpoint\":\"http://192.168.188.43:11434\"}",
|
"settings": "{\"endpoint\":\"http://192.168.188.43:11434\"}",
|
||||||
"models": {}
|
"models": {}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
=======
|
||||||
|
"provider_settings": {},
|
||||||
|
>>>>>>> origin/main
|
||||||
"presets": [],
|
"presets": [],
|
||||||
"fallback": null
|
"fallback": null
|
||||||
}
|
}
|
4
.obsidian/plugins/local-gpt/data.json
vendored
4
.obsidian/plugins/local-gpt/data.json
vendored
|
@ -2,7 +2,7 @@
|
||||||
"providers": {
|
"providers": {
|
||||||
"ollama": {
|
"ollama": {
|
||||||
"ollamaUrl": "http://localhost:11434",
|
"ollamaUrl": "http://localhost:11434",
|
||||||
"defaultModel": "llama3.1:8b-instruct-q8_0",
|
"defaultModel": "qwen2.5:14b",
|
||||||
"embeddingModel": "nomic-embed-text",
|
"embeddingModel": "nomic-embed-text",
|
||||||
"type": "ollama"
|
"type": "ollama"
|
||||||
},
|
},
|
||||||
|
@ -28,7 +28,7 @@
|
||||||
"defaults": {
|
"defaults": {
|
||||||
"provider": "ollama",
|
"provider": "ollama",
|
||||||
"fallbackProvider": "",
|
"fallbackProvider": "",
|
||||||
"creativity": "low"
|
"creativity": ""
|
||||||
},
|
},
|
||||||
"actions": [
|
"actions": [
|
||||||
{
|
{
|
||||||
|
|
120
.obsidian/plugins/smart-second-brain/data.json
vendored
120
.obsidian/plugins/smart-second-brain/data.json
vendored
|
@ -5,11 +5,109 @@
|
||||||
"initialAssistantMessageContent": "Hello, I am your assistant. How can I help you?",
|
"initialAssistantMessageContent": "Hello, I am your assistant. How can I help you?",
|
||||||
"isIncognitoMode": true,
|
"isIncognitoMode": true,
|
||||||
"ollamaGenModel": {
|
"ollamaGenModel": {
|
||||||
"model": "llama3.1:8b-instruct-q8_0",
|
"model": "qwen2.5:14b",
|
||||||
"baseUrl": "http://localhost:11434",
|
"baseUrl": "http://localhost:11434",
|
||||||
"temperature": 0.5,
|
"temperature": 0.5,
|
||||||
"contextWindow": 1948,
|
"contextWindow": 2048,
|
||||||
"lcModel": {
|
"lcModel": {
|
||||||
|
"lc": 1,
|
||||||
|
"type": "constructor",
|
||||||
|
"id": [
|
||||||
|
"langchain",
|
||||||
|
"chat_models",
|
||||||
|
"ollama",
|
||||||
|
"ChatOllama"
|
||||||
|
],
|
||||||
|
"kwargs": {
|
||||||
|
"model": "llama3.1:8b-instruct-q8_0",
|
||||||
|
"base_url": "http://localhost:11434",
|
||||||
|
"temperature": 0.5,
|
||||||
|
"context_window": 1248,
|
||||||
|
"lc_model": {
|
||||||
|
"lc": 1,
|
||||||
|
"type": "constructor",
|
||||||
|
"id": [
|
||||||
|
"langchain",
|
||||||
|
"chat_models",
|
||||||
|
"ollama",
|
||||||
|
"ChatOllama"
|
||||||
|
],
|
||||||
|
"kwargs": {
|
||||||
|
"model": "llama3.1:8b-instruct-q8_0",
|
||||||
|
"base_url": "http://localhost:11434",
|
||||||
|
"temperature": 0.5,
|
||||||
|
"context_window": 1348,
|
||||||
|
"lc_model": {
|
||||||
|
"lc": 1,
|
||||||
|
"type": "constructor",
|
||||||
|
"id": [
|
||||||
|
"langchain",
|
||||||
|
"chat_models",
|
||||||
|
"ollama",
|
||||||
|
"ChatOllama"
|
||||||
|
],
|
||||||
|
"kwargs": {
|
||||||
|
"model": "llama3.1:8b-instruct-q8_0",
|
||||||
|
"base_url": "http://localhost:11434",
|
||||||
|
"temperature": 1,
|
||||||
|
"context_window": 1448,
|
||||||
|
"lc_model": {
|
||||||
|
"lc": 1,
|
||||||
|
"type": "constructor",
|
||||||
|
"id": [
|
||||||
|
"langchain",
|
||||||
|
"chat_models",
|
||||||
|
"ollama",
|
||||||
|
"ChatOllama"
|
||||||
|
],
|
||||||
|
"kwargs": {
|
||||||
|
"model": "llama3.1:8b-instruct-q8_0",
|
||||||
|
"base_url": "http://localhost:11434",
|
||||||
|
"temperature": 0,
|
||||||
|
"context_window": 1548,
|
||||||
|
"lc_model": {
|
||||||
|
"lc": 1,
|
||||||
|
"type": "constructor",
|
||||||
|
"id": [
|
||||||
|
"langchain",
|
||||||
|
"chat_models",
|
||||||
|
"ollama",
|
||||||
|
"ChatOllama"
|
||||||
|
],
|
||||||
|
"kwargs": {
|
||||||
|
"model": "llama3.1:8b-instruct-q8_0",
|
||||||
|
"base_url": "http://localhost:11434",
|
||||||
|
"temperature": 0,
|
||||||
|
"context_window": 1648,
|
||||||
|
"lc_model": {
|
||||||
|
"lc": 1,
|
||||||
|
"type": "constructor",
|
||||||
|
"id": [
|
||||||
|
"langchain",
|
||||||
|
"chat_models",
|
||||||
|
"ollama",
|
||||||
|
"ChatOllama"
|
||||||
|
],
|
||||||
|
"kwargs": {
|
||||||
|
"model": "llama3.1:8b-instruct-q8_0",
|
||||||
|
"base_url": "http://localhost:11434",
|
||||||
|
"temperature": 0.5,
|
||||||
|
"context_window": 1748,
|
||||||
|
"lc_model": {
|
||||||
|
"lc": 1,
|
||||||
|
"type": "constructor",
|
||||||
|
"id": [
|
||||||
|
"langchain",
|
||||||
|
"chat_models",
|
||||||
|
"ollama",
|
||||||
|
"ChatOllama"
|
||||||
|
],
|
||||||
|
"kwargs": {
|
||||||
|
"model": "llama3.1:8b-instruct-q8_0",
|
||||||
|
"base_url": "http://localhost:11434",
|
||||||
|
"temperature": 0.5,
|
||||||
|
"context_window": 1848,
|
||||||
|
"lc_model": {
|
||||||
"lc": 1,
|
"lc": 1,
|
||||||
"type": "constructor",
|
"type": "constructor",
|
||||||
"id": [
|
"id": [
|
||||||
|
@ -25,11 +123,25 @@
|
||||||
"context_window": 1948
|
"context_window": 1948
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"ollamaEmbedModel": {
|
"ollamaEmbedModel": {
|
||||||
"model": "nomic-embed-text",
|
"model": "nomic-embed-text",
|
||||||
"baseUrl": "http://localhost:11434",
|
"baseUrl": "http://localhost:11434",
|
||||||
"similarityThreshold": 0.75,
|
"similarityThreshold": 0.5,
|
||||||
"k": 100
|
"k": 100
|
||||||
},
|
},
|
||||||
"openAIGenModel": {
|
"openAIGenModel": {
|
||||||
|
@ -49,7 +161,7 @@
|
||||||
"Chats",
|
"Chats",
|
||||||
"*.excalidraw.md"
|
"*.excalidraw.md"
|
||||||
],
|
],
|
||||||
"isQuickSettingsOpen": true,
|
"isQuickSettingsOpen": false,
|
||||||
"isVerbose": false,
|
"isVerbose": false,
|
||||||
"isOnboarded": true,
|
"isOnboarded": true,
|
||||||
"hideIncognitoWarning": false,
|
"hideIncognitoWarning": false,
|
||||||
|
|
Binary file not shown.
25
.obsidian/workspace.json
vendored
25
.obsidian/workspace.json
vendored
|
@ -20,8 +20,23 @@
|
||||||
"icon": "lucide-file",
|
"icon": "lucide-file",
|
||||||
"title": "4 L1 and L2 normalization"
|
"title": "4 L1 and L2 normalization"
|
||||||
}
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "936bb9413b85b0e8",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "conflict-files-obsidian-git.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "conflict-files-obsidian-git"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
"currentTab": 1,
|
||||||
"stacked": true
|
"stacked": true
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -180,10 +195,13 @@
|
||||||
"obsidian-git:Open Git source control": false
|
"obsidian-git:Open Git source control": false
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"active": "42dc8aa905e2dc18",
|
"active": "936bb9413b85b0e8",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
"Foundation of data science/slides/Untitled.md",
|
|
||||||
"Foundation of data science/notes/4 L1 and L2 normalization.md",
|
"Foundation of data science/notes/4 L1 and L2 normalization.md",
|
||||||
|
"conflict-files-obsidian-git.md",
|
||||||
|
"Senza nome.md",
|
||||||
|
"Autonomous Networking/images/Pasted image 20241031144640.png",
|
||||||
|
"Foundation of data science/slides/Untitled.md",
|
||||||
"Untitled.md",
|
"Untitled.md",
|
||||||
"Biometric Systems/notes/6. Face recognition 2D.md",
|
"Biometric Systems/notes/6. Face recognition 2D.md",
|
||||||
"Foundation of data science/notes/3 Multi Class Binary Classification.md",
|
"Foundation of data science/notes/3 Multi Class Binary Classification.md",
|
||||||
|
@ -191,7 +209,6 @@
|
||||||
"Biometric Systems/images/Pasted image 20241030133828.png",
|
"Biometric Systems/images/Pasted image 20241030133828.png",
|
||||||
"Biometric Systems/images/Pasted image 20241030142613.png",
|
"Biometric Systems/images/Pasted image 20241030142613.png",
|
||||||
"Biometric Systems/images/Pasted image 20241031104526.png",
|
"Biometric Systems/images/Pasted image 20241031104526.png",
|
||||||
"conflict-files-obsidian-git.md",
|
|
||||||
"Biometric Systems/slides/LEZIONE6_Face recognition2D.pdf",
|
"Biometric Systems/slides/LEZIONE6_Face recognition2D.pdf",
|
||||||
"Biometric Systems/images/Pasted image 20241031104206.png",
|
"Biometric Systems/images/Pasted image 20241031104206.png",
|
||||||
"Biometric Systems/images/Pasted image 20241031102640.png",
|
"Biometric Systems/images/Pasted image 20241031102640.png",
|
||||||
|
@ -200,7 +217,6 @@
|
||||||
"Biometric Systems/slides/Biometric_System___Notes.pdf",
|
"Biometric Systems/slides/Biometric_System___Notes.pdf",
|
||||||
"Biometric Systems/images/Pasted image 20241031091853.png",
|
"Biometric Systems/images/Pasted image 20241031091853.png",
|
||||||
"Biometric Systems/images/Pasted image 20241031085606.png",
|
"Biometric Systems/images/Pasted image 20241031085606.png",
|
||||||
"Biometric Systems/images/Pasted image 20241031084659.png",
|
|
||||||
"Autonomous Networking/notes/9 Markov processes.md",
|
"Autonomous Networking/notes/9 Markov processes.md",
|
||||||
"Autonomous Networking/notes/7.1 K-Armed bandit problem.md",
|
"Autonomous Networking/notes/7.1 K-Armed bandit problem.md",
|
||||||
"Autonomous Networking/notes/7.2 10 arm testbed - optimism in face of uncertainty.md",
|
"Autonomous Networking/notes/7.2 10 arm testbed - optimism in face of uncertainty.md",
|
||||||
|
@ -227,7 +243,6 @@
|
||||||
"Foundation of data science/notes/1 CV Basics.md",
|
"Foundation of data science/notes/1 CV Basics.md",
|
||||||
"Biometric Systems/notes/2. Performance indexes.md",
|
"Biometric Systems/notes/2. Performance indexes.md",
|
||||||
"Biometric Systems/notes/3. Recognition Reliability.md",
|
"Biometric Systems/notes/3. Recognition Reliability.md",
|
||||||
"Autonomous Networking/notes/4 WSN pt. 2.md",
|
|
||||||
"Untitled.canvas"
|
"Untitled.canvas"
|
||||||
]
|
]
|
||||||
}
|
}
|
BIN
Autonomous Networking/images/Pasted image 20241031144640.png
Normal file
BIN
Autonomous Networking/images/Pasted image 20241031144640.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
|
@ -40,7 +40,7 @@ as we can see, the system explores more at the beginning, which is good as it wi
|
||||||
- only effective for stationary problems
|
- only effective for stationary problems
|
||||||
- for non-stationary problems we have to use eps-greedy
|
- for non-stationary problems we have to use eps-greedy
|
||||||
|
|
||||||
### Optimism in the Face of Uncertainty
|
### Optimism in the Face of Uncertainty - Upper Confidence Bound (UCB)
|
||||||
- ...
|
- ...
|
||||||
- easy problem:
|
- easy problem:
|
||||||
- two arms, one always good and one always bad
|
- two arms, one always good and one always bad
|
||||||
|
@ -59,17 +59,23 @@ which actions should we peek?
|
||||||
|
|
||||||
![[Pasted image 20241025090344.png]]
|
![[Pasted image 20241025090344.png]]
|
||||||
the brackets represent a confidence interval around q*(a). The system is confident that the value lies somewhere in the region.
|
the brackets represent a confidence interval around q*(a). The system is confident that the value lies somewhere in the region.
|
||||||
|
The problem is that, when a region is large, we don't know where the average value is! So we have to try!
|
||||||
|
|
||||||
If region is very small, we are very certain!
|
If region is very small, we are very certain!
|
||||||
|
|
||||||
![[Pasted image 20241025090549.png]]
|
![[Pasted image 20241025090549.png]]
|
||||||
In this situation we chose Q2 as estimated value is the highest.
|
In this situation we chose Q2 as estimated value is the highest.
|
||||||
|
![[Pasted image 20241031144640.png]]
|
||||||
|
But in this case Q1.
|
||||||
#### Action selection
|
#### Action selection
|
||||||
![[Pasted image 20241025090625.png]]
|
![[Pasted image 20241025090625.png]]
|
||||||
... check slides for formula explaination ...
|
- We will select the action that has the highest estimated value plus the upper-confidence bound exploration term
|
||||||
|
- The c parameter is a user-specified parameter that controls the amount of exploration
|
||||||
|
- $N_{t}(a)$ is the number of times an action $a$ has been taken
|
||||||
|
|
||||||
|
|
||||||
- to systematically reduce uncertainity, UCB explores more at the beginning
|
- to systematically reduce uncertainity, UCB explores more at the beginning
|
||||||
- UCB's exploration reduces over time, eps-greedy continues to take a random action 10% of the time
|
- UCB's exploration reduces over time, eps-greedy continues to take a random action 10% of the time
|
||||||
|
|
||||||
|
### AI generated summary
|
||||||
|
In the end, we can say that UCB is an effective strategy for balancing exploration and exploitation in multi-armed bandit problems. Unlike ε-greedy methods, which maintain a fixed level of exploration throughout the process, UCB dynamically adjusts its exploration rate based on the uncertainty associated with each action's value estimates. This adaptability makes UCB particularly well-suited for scenarios where initial exploration is crucial to quickly identify high-reward actions but later iterations require more focused exploitation.
|
|
@ -57,7 +57,7 @@ This is a Markov Process but we also have a reward function! We also have a disc
|
||||||
|
|
||||||
Value function
|
Value function
|
||||||
- The value function v(s) gives the long-term value of (being in) state s
|
- The value function v(s) gives the long-term value of (being in) state s
|
||||||
- The state value function v(s) of an MRP is the expected return starting from state s $𝑉) = 𝔼 [𝐺𝑡 |𝑆𝑡 = 𝑠]$
|
- The state value function v(s) of an MRP is the expected return starting from state s $𝑉 = 𝔼 [𝐺𝑡 |𝑆𝑡 = 𝑠]$
|
||||||
|
|
||||||
![[Pasted image 20241030103519.png]]
|
![[Pasted image 20241030103519.png]]
|
||||||
![[Pasted image 20241030103706.png]]
|
![[Pasted image 20241030103706.png]]
|
||||||
|
@ -111,8 +111,8 @@ The state-value function v𝜋(s) of an MDP is the expected return starting from
|
||||||
The action-value function q 𝜋 (s,a) is the expected return starting from state s, taking action a, and then following policy 𝜋 $$q 𝜋(a|s)= 𝔼𝜋 [ Gt | St=s, At=a ]$$
|
The action-value function q 𝜋 (s,a) is the expected return starting from state s, taking action a, and then following policy 𝜋 $$q 𝜋(a|s)= 𝔼𝜋 [ Gt | St=s, At=a ]$$
|
||||||
![[Pasted image 20241030105022.png]]
|
![[Pasted image 20241030105022.png]]
|
||||||
|
|
||||||
- The state-value function can again be decomposed into immediate reward plus discounted value of successor state $$v\pi(s) = E\pi[Rt+1 + v⇡(St+1) | St = s]$$
|
- The state-value function can again be decomposed into immediate reward plus discounted value of successor state $$v_{\pi}(s) = E_{\pi}[R_{t+1} + v_{\pi}(S_{t+1}) | St = s]$$
|
||||||
- The action-value function can similarly be decomposed $$q\pi(s, a) = E\pi [Rt+1 + q⇡(St+1, At+1) | St = s, At = a]$$
|
- The action-value function can similarly be decomposed $$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + q_{\pi}(S_{t+1}, A_{t+1}) | St = s, At = a]$$
|
||||||
![[Pasted image 20241030105148.png]]![[Pasted image 20241030105207.png]]
|
![[Pasted image 20241030105148.png]]![[Pasted image 20241030105207.png]]
|
||||||
![[Pasted image 20241030105216.png]]
|
![[Pasted image 20241030105216.png]]
|
||||||
putting all together
|
putting all together
|
||||||
|
|
|
@ -2,44 +2,39 @@ Assistant
|
||||||
Hello, I am your assistant. How can I help you?
|
Hello, I am your assistant. How can I help you?
|
||||||
- - - - -
|
- - - - -
|
||||||
User
|
User
|
||||||
what are UAVs?
|
Bias vs variance
|
||||||
- - - - -
|
- - - - -
|
||||||
Assistant
|
Assistant
|
||||||
Based on our previous conversation and my understanding of the knowledge you've shared with me, I'll respond to your query.
|
**Bias vs Variance**
|
||||||
|
=====================
|
||||||
|
|
||||||
**UAVs (Unmanned Aerial Vehicles)**
|
The bias-variance tradeoff is a fundamental concept in machine learning that refers to the balance between two types of errors: **bias** and **variance**.
|
||||||
|
|
||||||
UAVs, also known as drones or unmanned aircraft systems (UAS), are [[Remote Controlled Aircraft|remote controlled aircraft]] that operate without a human pilot on board. They can be used for various purposes, including:
|
### Bias
|
||||||
|
|
||||||
* Surveillance and reconnaissance
|
* The error caused by **bias** measures how far off the predictions of a model are from the true value. It represents the difference between the predicted mean of the model and the correct value.
|
||||||
* Military operations
|
* A high bias indicates that the model is underfitting, meaning it's too simple to capture the underlying patterns in the data.
|
||||||
* Agricultural monitoring
|
|
||||||
* Environmental monitoring
|
|
||||||
* Aerial photography and videography
|
|
||||||
* Package delivery
|
|
||||||
|
|
||||||
UAVs typically consist of an airframe, engine, propellers, sensors, and a control system. Some UAVs are controlled remotely by a human pilot, while others can fly autonomously using pre-programmed flight plans or GPS navigation.
|
### Variance
|
||||||
|
|
||||||
If you'd like to know more about UAVs, feel free to ask!
|
* The error due to **variance** measures how much the predictions of a model vary for a given point. It reflects the impact of randomness in the data on the prediction results.
|
||||||
|
* A high variance indicates that the model is overfitting, meaning it's too complex and fits the noise in the training data.
|
||||||
|
|
||||||
(Note: I couldn't find any specific notes on UAVs in your existing knowledge, so I've provided general information. If you have any additional notes or details, please let me know!)
|
### Diagrammatic Representation
|
||||||
- - - - -
|
|
||||||
User
|
The bias-variance tradeoff can be visualized using a **target diagram**, where the center represents a perfect model that predicts the true values.
|
||||||
latex absolute value
|
|
||||||
- - - - -
|
### Mathematical Definition
|
||||||
Assistant
|
|
||||||
It seems that there is no relevant information about "latex absolute value" in your existing knowledge. However, based on my understanding of LaTeX, I can provide you with a brief explanation.
|
The prediction error at point x can be decomposed into bias, variance, and irreducible error:
|
||||||
|
|
||||||
**Absolute Value in LaTeX**
|
$$\text{Err}(x) = \left(E[\hat{f}(x)] - f(x)\right)^2 + E\left[(\hat{f}(x) - E[\hat{f}(x)])^2\right] + \sigma^2_\epsilon$$
|
||||||
|
|
||||||
In LaTeX, the absolute value of an expression is denoted by the `\lvert` command for left absolute value and `\rvert` command for right absolute value. The `|` symbol can also be used to represent absolute value.
|
### Related Concepts
|
||||||
|
|
||||||
For example:
|
* **Optimism in the Face of Uncertainty - Upper Confidence Bound (UCB)**: Discusses balancing exploration and exploitation in a multi-armed bandit setting, related to bias-variance tradeoff.
|
||||||
|
* **Gaussian Filtering**: Describes linear filtering using a Gaussian kernel, which can smooth out noise and reduce variance.
|
||||||
* `\lvert x \rvert` represents the absolute value of `x`
|
* **Logistic Regression**: Introduces maximum likelihood estimation (MLE) for logistic regression, related to bias-variance tradeoff in model selection.
|
||||||
* `|x|` is an alternative way to represent absolute value
|
|
||||||
|
These concepts can be used to discuss the bias-variance tradeoff in more detail.
|
||||||
If you need more information or have specific questions about LaTeX, feel free to ask!
|
|
||||||
|
|
||||||
(Note: I've assumed that your knowledge on LaTeX is limited, so I've provided basic information. If you have any additional notes or details, please let me know!)
|
|
||||||
- - - - -
|
- - - - -
|
0
Senza nome.md
Normal file
0
Senza nome.md
Normal file
Loading…
Add table
Add a link
Reference in a new issue