

CONCURRENT SYSTEMS LECTURE 10

Prof. Daniele Gorla

Consensus Number

Which objects allow for a wait free impementation of (binary) consensus?

 \rightarrow the answer depends on the number of participants

The **consensus number** of an object of type T is the greatest number n such that it is possible to wait free implement a consensus object in a system of n processes by only using objects of type T and atomic R/W registers.

For all T, CN(T) > 0; if there is no sup, we let $CN(T) := +\infty$

Thm: let CN(T1) < CN(T2), then there exists no wait free implementation of objects of type T2 in a system of n processes that only uses objects of type T1 and atomic RW reg.s, for all n s.t. $CN(T1) < n \le CN(T2)$.

Proof

- Fix such an n; by contr., there exists a wait free implementation of objects of type T2 in a system of n processes that only uses objects of type T1 and atomic RW reg.s.
- Since $n \le CN(T2)$, by def. of CN, there exists a wait free implementation of consensus in a system of n processes that only uses objects of type T2 and atomic RW reg.s.
- Hence, there exists a wait free implementation of consensus in a system of n processes that only uses objects of type T1 and atomic RW reg.s.

 \rightarrow contraddiction with CN(T1) < n

<u>Q.E.D.</u>

Schedule = sequence of operation invocations issued by processes

Configuration = the global state of a system at a given execution time (values of the shared memory + local state of every process)

Given a configuration C and a schedule S, we denote with S(C) the configuration obtained starting from C and applying S

Let us consider binary consensus implemented by an algorithm A by using base objects and atomic R/W registers; let us call S_A a schedule induced by A.

A configuration C obtained during the execution of A is called

- **v-valent** if $S_A(C)$ decides v, for every S_A ;
- monovalent, if there exists $v \in \{0,1\}$ s.t. C is v-valent;
- **bivalent**, otherwise.

Fundamental theorem

Thm: If A wait-free implements binary consensus for n processes, then there exists a bivalent initial configuration.

Proof:

- 1. Let C_i be the initial config. where all p_j (for $j \le i$) propose 1 and all the others propose 0
- 2. By validity, C_0 is 0-valent and C_n is 1-valent
- 3. By contradiction, assume all C_i to be monovalent
- 4. By (2), there exists an i such that C_{i-1} is 0-valent and C_i is 1-valent
- 5. By definition, C_{i-1} and C_i only differ in the value proposed by p_i (0 and 1, resp.)
- 6. Consider an execution of A where p_i is blocked for a very long period
 - by wait freedom, all other processes eventually decide
 - call S the scheduling from the beginning to the point in which all processes but p_i have decided
 - since C_{i-1} is 0-valent, all other processes decide 0
 - By (5) and because p_i is sleeping in S, also in $S(C_i)$ all other processes decide 0
 - If in $S(C_i)$ we resume p_i and it decides 1, we contradict agreement
 - If p_i decides 0, we contradict 1-valence of C_i .

CN(Atomic R/W registers) = 1

Thm: There exists no wait-free implementation of binary consensus for 2 processes that uses atomic R/W registers.

Proof:

By contradiction, assume A wait-free, with processes p and q.

By ther previous result, it has an initial bivalent configuration C.

→ let S be a sequence of operations s.t. C' = S(C) is maximally bivalent (i.e., p(S(C)) is 0-valent and q(S(C)) is 1-valent, or viceversa)

p(C') can be R1.read() or R1.write(v) and q(C') can be R2.read() or R2.write(v')

1. $R1 \neq R2 \neq$

Whatever operations p and q issue, we have that q(p(C')) = p(q(C'))But q(p(C')) is 0-val (because p(C') is) whereas p(q(C')) is 1-val

2. R1 = R2 and both operations are a read Like point (1)

CN(Atomic R/W registers) = 1

- 3. R1 = R2, with p that reads and q that writes (or viceversa) \neq
 - *Remark:* only p can distinguish C' from p(C') (reads put the value read in a local variable, visible only by the process that performed the read)
 - Let S' be the scheduling from C' where p stops and q decides:
 - \rightarrow S' starts with the write of q
 - \rightarrow S' leads q to decide 1, since q(C') is 1-val
 - Consider p(C') and apply S'
 - \rightarrow because of the initial remark, q decides 1 also here
 - Reactivate p
 - \rightarrow if p decides 0, then we would violate agreement
 - \rightarrow if p decides 1, we contradict 0-valence of p(C')
- 4. R1 = R2 and both operations are a write *Remark:* q(p(C)) = q(C) cannot be distinguished by q since the value written by p is lost after the write of q Then, work like in case (3).

CN(Test&set) = 2

```
TS a test&set object init at 0
PROP array of proposals, init at whatever
propose(i, v) :=
    PROP[i] ← v
    if TS.test&set() = 0 then return PROP[i] else return PROP[1-i]
```

Wait-freedom, Validity and Integrity hold by construction.

Agreement: the first that performs test&set receives 0 and decides his proposal; the other one receives 1 and decides the other proposal.

<u>**Thm.:**</u> there exists no A wait free that implements binary consensus for atomic R/W registers and test&set objects for 3 processes.

Proof:

Let C be bivalent and S maximal s.t. S(C) (call it C') is bivalent:

 \rightarrow p(C') is 0-val, q(C') is 1-val and r(C') is monoval (for example)

Let's assume that

- at C' r stops for a long time
- op_p and op_q are the next operations that p and q issue from C' by following A

- 1. op_p and op_q are both R/W operations on atomic registers \rightarrow like in the previous proof
- 2. One is an operation on an atomic register and the other one is a test&set, or both are test&set but on different objects

 \rightarrow like the first case of the previous proof, since p(q(C')) = q(p(C'))

3. They are both test&set on the same object $\rightarrow p(q(C'))$ is 1-val whereas q(p(C')) is 0-val

Let us now stop both p and q and resume $r \rightarrow r$ cannot see any difference between p(q(C')) and q(p(C'))(the only diff.'s are the values locally stored by p and q as result of T&S)

- Let S' be a schedule of operations only from r that leads p(q(C')) to a decision (that must be 1)
- Since r cannot see any difference between p(q(C')) and q(p(C')), if we run S' from q(p(C')) we must decide 1 as well

 \rightarrow in contradiction with q(p(C')) be 0-val

CN(Swap) = CN(Fetch&add) = 2

S a swap object init at \bot PROP array of proposals, init at whatever

```
propose(i, v) :=
    PROP[i] ← v
    if S.swap(i) = ⊥ then return PROP[i] else return PROP[1-i]
```

```
FA a fetch&add object init at 0
PROP array of proposals, init at whatever
```

REMARK: Similarly to Test&set, we can prove that no consensus is possible with 3 processes.

Let us consider a verison of the compare&swap where, instead of returning a boolean, it always returns the previous value of the object, i.e.:

```
X.compare&swap(old,new) :=

atomic - \begin{cases} tmp \leftarrow X \\ if tmp = old then X \leftarrow new \\ return tmp \end{cases}
```

```
CS a compare&swap object init at ⊥
propose(v) :=
   tmp ← CS.compare&swap(⊥,v)
   if tmp = ⊥ then return v else return tmp
```

Exercise: devise a consensus object with $CN = \infty$ by using the compare&swap that returns booleans.

