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MUTEX-free Concurrency
Critical sections (i.e., locks) have drawbacks:
• If not put at the right level of granularity, they unnecessarily reduce concurrency (and efficency) 
• Delays of one process may affect the whole system (limit case: crash during a CS)

MUTEX-freedom: the only atomicity is the one provided by the privitives themselves (no wrapping 
of code into CSs)
 à the liveness properties used so far cannot be used anymore, since they rely on CSs

1. Obstruction freedom: every time an operation is run in isolation (no overlap with any other 
operation on the same object), it terminates.

2. Non-blocking: whenever an operation is invoked on an object, eventually one operation on that 
object terminates

 à reminds deadlock-freedom in MUTEX-based concurrency
3. Wait freedom: whenever an operation is invoked on an object, it eventually terminates
 à reminds starvation-freedom in MUTEX-based concurrency
4. Bounded wait freedom: W.F. plus a bound on the number of steps needed to terminate
 à reminds bounded bypass in MUTEX-based concurrency

REMARK: these notions natuarlly cope with (crash) failures à fail stop is another way of terminating
    à there is no way of distinguishing a failure from an arbitrary long sleep (bec. of asynchrony)
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A wait-free Splitter
Assume to have atomic R/W registers.

A splitter is a concurrent object that provides a single operation dir such that:
1. (validity) it returns L, R or S (left, right, stop)
2. (concurrency) in case of n simultaneous invocations of dir

a. At most n-1 L are returned
b. At most n-1 R are returned
c. At most 1 S is returned

3. (wait freedom) it eventually terminates

Idea:
• Not all processes obtain the same value
• In a solo execution (i.e., without concurrency) the invoking process must stop (0 L 

&& 0 R && at most 1 S)
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A wait-free Splitter
We have:
• DOOR : MRMW boolean atomic register initialized at 1
• LAST : MRMW atomic register initialized at whatever process index

 dir(i) := 

  LAST ß i 

   if DOOR = 0 then return R

           else DOOR ß 0

             if LAST = i then return S

                   else return L

With 2 processes, you can have
• One goes left and one goes right
• One goes left and the other stops
• One goes right and the other stops 4



Thm (soundness): this implemenatation satisfies the 3 requirements for the splitter
Proof:
Termination and validity are trivial. For concurrency, we observe that:
1. Not all proc’s can obtain R
 à to obtain R, the door must have been closed and who closed the door 
      cannot obtain R
2. Not all proc’s can obtain L
 à let us consider the last process that writes into LAST (this is an atomic
      register, so this is meaningful)
 à if the door is closed, it receives R and √
      otherwise, it finds LAST=i and receives S à √
3. Let pi be the first process that receives S à LAST=i in its second if
 pi LASTßi  LAST=i
       ------------|-----------------------|--------------------->

  No pj has written into LAST
    à it has written LAST before i àit doesn’t find LAST=j in its
              second if and receives L à √
    à it has written LAST after i à it finds the door closed and
            receives R à  √



An Obstruction-free Timestamp Generator

A timestamp generator is a concurrent object that provides a single operation get_ts 
such that:

1. (validity) not two invocations of get_ts return the same value
2. (consistency) if one process terminates its invocation of get_ts before another one 

starts, the first receives a timestamp that is smaller than the one received by the 
second one

3. (obstruction freedom) if run in isolation, it eventually terminates

Idea: use something like a splitter for possible timestamp, so that only the process that 
receives S (if any) can get that timestamp.
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An Obstruction-free Timestamp Generator
We have:
• DOOR[i] : MRMW boolean atomic register initialized at 1, for all i
• LAST[i] : MRMW atomic register initialized at whatever process index, for all i
• NEXT : integer initialized at 1

 get_ts(i) := 

  k ß NEXT

  while true do

   LAST[k] ß i 

    if DOOR[k] = 1 then

    DOOR[k] ß 0

    if LAST[k] = i then NEXT++

                        return k

   k++
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Thm (soundness): this implementation satisfies the 3 properties of the timestamp
generator

Proof:
1. Validity holds because of property 2.c of the splitter
2. For consistency, the invocation that terminates increased the val of NEXT 
       before terminating
 à every process that starts after its termination will find NEXT to a
      greater value (NEXT never decreases!)
3. Obstruction freedom is trivial

REMARK: this implementation doesn’t satisfy the non-blocking property:
 p0 kß1 LAST[1]ß0             DOOR[1]=1 DOOR[1]ß0          LAST[1]≠0    kß2  …
       --------|------|-------|----------------|------|---------|-------|-------|-----|---|----->
 p1         kß1       LAST[1]ß1             DOOR[1]=0   kß2     …



A Wait-free Stack
REG is an unbounded array of atomic registers (the stack)

For all i, REG[i] can be
• Written
• Read by the swap(v) primitives (that atomically writes a new value in it)
• Initialized at ⊥

NEXT is an atomic register (pointing at the next free location of the stack) that can be
• Read
• Fetch&add
• Initialized at 1

 push(v) :=   pop() :=
    i ß NEXT.fetch&add(1)    k ß NEXT-1
    REG[i] ß v      for i=k downto 1
      tmp ß REG[i].swap(⊥)
      if tmp≠⊥ then return tmp
        return ⊥
REMARK: crashes do not compromise progress!
PROBLEM: unboundedness of REG is not realistic
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A Non-blocking Bounded Stack
Idea: every operation is started by the invoking process and finalized by the next process

STACK[0..k] : an array of registers that can be read or compare&setted
 à STACK[i] is actually a pair ⟨val , seq_numb⟩ initialized at ⟨⊥,0⟩

This is needed for the so called ABA problem with compare&set:
• A typical use of compare&set is tmp ß X
     …
     if X.compare&set(tmp,v) then …
• This is to ensure that the value of X has not changed in the computation 
• The problem is that X can be changed twice before the comp&set
• Solution: X is a pair ⟨val , seq_numb⟩, with the constraint that each modification of 

X increases its seq_numb 
 à with the comp&set you mainly test that the seq_numb has not changed

TOP : a register that can be read or compare&setted
 à TOP is actually a triple ⟨index , val , seq_numb⟩ initialized at ⟨0,⊥,1⟩

           where the the pair to be put
   top is in STACK at the top of STACK
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A Non-blocking Bounded Stack
push(w) :=   

 while true do

  ⟨i,v,s⟩ ß TOP

  conclude(i,v,s)

  if i=k then return FULL

  newtop ß ⟨i+1,w,STACK[i+1].seq_num+1⟩
  if TOP.compare&set(⟨i,v,s⟩,newtop)
  then return OK

     conclude(i,v,s) :=

pop() :=       tmp ß STACK[i].val

 while true do      STACK[i].compare&set(⟨tmp,s-1⟩,⟨v,s⟩)
  ⟨i,v,s⟩ ß TOP

  conclude(i,v,s)

  if i=0 then return EMPTY

  newtop ß ⟨i-1,STACK[i-1]⟩
  if TOP.compare&set(⟨i,v,s⟩,newtop)
  then return v
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A Non-blocking Bounded Stack
Thm (liveness): the implementation of the stack is non-blocking.

Proof:
Let us consider an operation invocation performed by p
 - if it terminates à √
 - otherwise, TOP has changed between the first of TOP and the last Compare&set
  à the only instruction that modifies TOP is the closing Compare&set
  à another operation invocation (issued by another process) has terminated à √

REMARK: the fact that the operation is concluded by the next process, together with atomicity of 
compare&set, ensures correctness even with crash failures

  à if it was part of the invocation (just before the final return of push/pop), a failure
       just after the TOP.compare&set would compromise consistency
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