Neural Networks and Backpropagation

Fundamentals of Data Science 4, 11 December 2023 Prof. Fabio Galasso

Recall: Linear Classifier

7

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

¹¹ **Fabio Galasso** Fundamentals of Data Science | Winter Semester 2023

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

Let's double check...

• Entropy & KL-divergence:

$$H(P^t) = -\sum_{y} P^t(y) \log P^t(y)$$
$$D_{KL}(P^t||Q) = \sum_{y} P^t(y) \log \frac{P^t(y)}{Q(y)}$$

• Cross Entropy the sum of both:

$$H(P^t, Q) = H(P^t) + D_{KL}(P^t || Q)$$
$$= \sum_{y} P^t(y) \left(\log \frac{P^t(y)}{Q(y)} - \log P^t(y) \right)$$
$$= -\sum_{y} P^t(y) \log Q(y)$$

Let's double check...

- Cross Entropy in our classification case:
 - Target "distribution" / output:

$$P^{t}(y) = \begin{cases} 1 & y = y_i \\ 0 & y \neq y_i \end{cases}$$

• Output of the network:

$$Q(y|x_i) = P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

• Then Cross Entropy Loss for image x_i

$$L_i = L(x_i) = -\sum_y P^t(y) \log Q(y|x_i)$$
$$= -1 \cdot \log Q(y_i|x_i)$$
$$= -\log P(Y = y_i|X = x_i)$$

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1] \ w_1 = [1, 0, 0, 0]$$

L2 Regularization
$$R(W) = \sum_k \sum_l W_{k,l}^2$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25
ight]$$

L2 regularization likes to "spread out" the weights

$$w_1^T x = w_2^T x = 1$$

 $R(w_1) = 1^2 + 0^2 + \dots = 1^2$
 $R(w_2) = 0.25^2 + 0.25^2 + \dots = 4 * 0.25^2 = 0.25$

Regularization: Prefer Simpler Models

Where we are...

$$s = f(x; W) = Wx$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Linear score function

Softmax loss

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

How to find the best W?

Finding the best W: Optimize with Gradient Descent

Vanilla Gradient Descent

while True:

Landscape image is <u>CC0 1.0</u> public domain Walking man image is <u>CC0 1.0</u> public domain

19

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Outline

- Backpropagation and Gradient Descent
 - illustrated using computational graphs
 - chain rule upstream and local gradients
 - modularization example
- Neural Networks and Deep Learning
 - intuition why deep learning can help
 - integrated learning of features and classifier

Backpropagation and Gradient Descent

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= -\log \big(\frac{e^{sy_i}}{\sum_j e^{s_j}} \big) \quad \text{Softmax loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute} \quad \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{ then we can learn } W_1 \text{ and } W_2 \end{split}$$

(Bad) Idea: Derive $\nabla_W L$ on paper

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use L2 instead of softmax? Need to re-derive from scratch

Problem: Not feasible for very complex models!

Better Idea: Computational graphs + Backpropagation

Backpropagation: a simple example

$$f(x,y,z) = (x+y)z$$

Backpropagation: a simple example

$$f(x,y,z) = (x+y)z$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$
 $q = x + y$ $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
 $f = qz$ $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$
 $q = x + y$ $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
 $f = qz$ $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$
 $q = x + y$ $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
 $f = qz$ $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

-

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

66 Fabio Galasso

Fundamentals of Data Science | Winter Semester 2023

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

-

67 **Fabio Galasso** Fundamentals of Data Science I Winter Ser

Fundamentals of Data Science | Winter Semester 2023

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

add gate: gradient distributor

add gate: gradient distributor

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Backprop Implementation: "Flat" code $v_{0} \xrightarrow{2.00}{-0.20} * \xrightarrow{-2.00}{0.20}$	c Forward pass: Compute output	<pre>set T(w0, x0, w1, x1, w2): s0 = w0 * x0 s1 = w1 * x1 s2 = s0 + s1 s3 = s2 + w2 L = sigmoid(s3)</pre>
$x_{0} = \frac{1.00}{0.40}$ $w_{1} = \frac{3.00}{-0.40}$ $x_{1} = \frac{2.00}{-0.60}$ $w_{2} = \frac{3.00}{0.20}$ $w_{2} = \frac{3.00}{0.20}$	Backward pass: Compute grads	<pre>grad_L = 1.0 grad_s3 = grad_L * (1 - L) * L grad_w2 = grad_s3 grad_s2 = grad_s3 grad_s0 = grad_s2 grad_s1 = grad_s2 grad_w1 = grad_s1 * x1 grad_w1 = grad_s1 * w1 grad_w0 = grad_s0 * x0 grad_x0 = grad_s0 * w0</pre>

	<pre>def f(w0, x0, w1, x1, w2):</pre>
Forward pass: Compute output	s0 = w0 * x0
	s1 = w1 * x1
	s2 = s0 + s1
	s3 = s2 + w2
	L = sigmoid(s3)
Base case	grad_L = 1.0
	grad_s3 = grad_L * (1 - L) * L
	grad_w2 = grad_s3
	grad_s2 = grad_s3

- grad_s0 = grad_s2
- grad_s1 = grad_s2
 grad_w1 = grad_s1 * x1
 grad_x1 = grad_s1 * w1
- grad_w0 = grad_s0 * x0
- $grad_x0 = grad_s0 * w0$

def f(w0, x0, w1, x1, w2):
 s0 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
 L = sigmoid(s3)

Forward pass:

Compute output

Sigmoid

$grad_L = 1.0$
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Forward pass: Compute output $s0 = w0 \approx 1$ $s1 = w1 \approx 1$ $s2 = s0 \approx 1$

Add gate

d	ef	f(\	w0,	x	0,	w1,	x1,	w2):
	s0	=	w0	*	X	0		
	s1	=	w1	*	X	1		
	s2	=	s0	+	S	1		
	s3	=	s2	+	W	2		
	L	=	sigr	no	id	(s3)		

$grad_L = 1.0$
<u>grad_s3 = grad_L * (1 - L) * L</u>
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Forward pass: Compute output

Add gate

d	ef f(w0,	x0, w1, x2	1, w2):
	s0 = w0	* X0	
	s1 = w1	* x1	
	s2 = s0	+ s1	
	s3 = s2	+ w2	
	L = sig	moid(s3)	

$grad_L = 1.0$
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
$grad_s2 = grad_s3$
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

	<pre>def f(w0, x0, w1, x1, w2):</pre>
Forward pass: Compute output	s0 = w0 * x0
	s1 = w1 * x1
	s2 = s0 + s1
	s3 = s2 + w2
	L = sigmoid(s3)
	$grad_L = 1.0$
	grad_s3 = grad_L * (1 - L) * L
	grad_w2 = grad_s3
	grad_s2 = grad_s3
	grad_s0 = grad_s2
	grad_s1 = grad_s2
Multiply gate	grad_w1 = grad_s1 * x1
maniply gate	grad_x1 = grad_s1 * w1
	$grad_w0 = grad_s0 * x0$

 $grad_x0 = grad_s0 * w0$

Fabio Galasso Fundamentals of Data Science | Winter Semester 2023

84

Forward pass: Compute output

Multiply gate

d <mark>ef</mark> f(w0,	x0, w1, x1,	w2):
s0 = w0	* ×0	
s1 = w1	* x1	
s2 = s0	+ s1	
s3 = s2	+ w2	
L = sign	noid(s3)	

grad_L = 1.0 grad_s3 = grad_L * (1 - L) * L grad_w2 = grad_s3 grad_s2 = grad_s3 grad_s0 = grad_s2 grad_s1 = grad_s2 grad_w1 = grad_s1 * x1 grad_x1 = grad_s1 * w1 grad_w0 = grad_s0 * x0 grad_x0 = grad_s0 * w0

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

class ComputationalGraph(object): #... def forward(inputs): # 1. [pass inputs to input gates...] # 2. forward the computational graph: for gate in self.graph.nodes_topologically_sorted(): gate.forward() return loss # the final gate in the graph outputs the loss def backward(): for gate in reversed(self.graph.nodes_topologically_sorted()): gate.backward() # little piece of backprop (chain rule applied) return inputs_gradients

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

Х

*

So far: backprop with scalars

What about vector-valued functions?

Recap: Vector derivatives Scalar to Scalar

 $x\in \mathbb{R}, y\in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If x changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

 $\overline{\partial}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

$$\frac{l}{c} \in \mathbb{R}$$

If x changes by a small amount, how much will y change? For each element of x, if it changes by a small amount then how much will y change?

Recap: Vector derivatives

Scalar to Scalar

 $x\in \mathbb{R}, y\in \mathbb{R}$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change? Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will y change? Vector to Vector

 $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Derivative is Jacobian:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \ \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will each element of y change?

Backprop with Vectors

Backprop with Vectors

 $[N \times D]$ $[N \times M]$ $[M \times D]$

 $[D \times M] [D \times N] [N \times M]$ ∂L

These formulas are easy to remember: they are the only way to make shapes match up!

Summary

- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Outline

- Backpropagation and Gradient Descent
 - illustrated using computational graphs
 - chain rule upstream and local gradients
 - modularization example
- Neural Networks and Deep Learning
 - intuition why deep learning can help
 - integrated learning of features and classifier

Neural Networks and Deep Learning

Neural networks: 1 layer, the linear classifier

(**Before**) Linear score function: $\boldsymbol{f} = \boldsymbol{W} \boldsymbol{x}$ $x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C imes D}$

Neural networks: 2 layers

(**Before**) Linear score function: f = Wx(**Now**) 2-layer Neural Network: $f = W_2 \max(0, W_1x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 2 layers

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: deeper networks

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1x)$ or 3-layer Neural Network: $f = W_3 \max(0, W_2 \max(0, W_1x))$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 2 layers f = Wx(**Before**) Linear score function: $f = W_2 \max(0, W_1 x)$ (**Now**) 2-layer Neural Network: W1 h W2 Χ S 10 100 3072 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Learn 100 templates instead of 10. Share templates among classes

Neural networks: why is max operator important? (Before) Linear score function: f = Wx(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1x)$

The function $\max(0, z)$ is called the **activation function**. **Q**: What if we try to build a neural network without one? $f = W_2 W_1 x$

Neural networks: why is max operator important? (Before) Linear score function: f = Wx(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

 $f = W_2 W_1 x$ $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Universal approximation theorem

Let h(x) be a continuous function defined on a compact subset $S \subset R^d$ and $\varepsilon > 0$. For a sufficiently large p, there exists an f (x) with p hidden units such that:

$$|h(x) - f(x)| < \varepsilon, \forall x \in S$$

This holds for any non-constant, bounded, continuous φ .

Cybenko 1989

NNs training

MLPs are highly non-convex. Therefore, its optimization landscape has multiple local minima.

Training a neural network optimally is NP-hard!

It is highly dependent on a good initialization.

Finding the global optimum requires running GD from almost everywhere (almost impossible in practice)

Activation functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

ReLU is a good default choice for most problems

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Neural networks: Architectures

Setting the number of layers and their sizes

more neurons = more capacity

Do not use size of neural network as a regularizer. Use stronger regularization instead:

https://playground.tensorflow.org/

Deep Learning Ingredients

- Deep Learning is based on
 - Availability of large datasets
 - Massive parallel compute power
 - Advances in machine learning over the years
- Strong improvements due to
 - Internet (availability of large-scale data)
 - GPUs (availability of parallel compute power)
 - Deep / hierarchical models with end-to-end learning

Ingredients for Deep Learning

Image features vs ConvNets

Traditional Approach

- Feature extraction
 - often hand crafted and fixed
 - might be too general (not task-specific enough)
 - might be too specific (does not generalize to other tasks)
- How to achieve best classification performance
 - more complex classifier (e.g. multi-feature, non-linear)?
 - how specialized for the task?

Hand-Crafted Features.. before DNNs (slide of Rob Fergus)

- Features are key to recent progress in recognition
- Multitude of hand-designed features currently in use
 - ► SIFT, HOG, LBP, MSER, Color-SIFT etc.
- Where next? Better classifiers? Or keep building more features?

Felzenszwalb, Girshick, McAllester and Ramanan, PAMI 2007

Yan & Huang (Winner of PASCAL 2010 classification competition)

194 Fabio Galasso Fundamentals of Data Science | Winter Semester 2023

Deep Learning: Trainable features

- Parameterized feature extraction
- Features should be
 - efficient to compute
 - efficient to train (differentiable)

196 **Fabio Galasso** Fundamentals of Data Science | Winter Semester 2023

"End-to-End" system

- Parameterized feature extraction
- Features should be
 - efficient to compute
 - efficient to train (differentiable)
- Joint training of feature extraction and classification
- Feature extraction and classification merge into one pipeline

"End-to-End" system

- All parts are adaptive
- No differentiation between feature extraction and classification
- Nonlinear transformation from input to desired output

"End-to-End" system

- How can we build such systems?
- What is the parameterization (hypothesis)?
- Composition of simple building blocks can lead to complex systems (e.g. neurons brain)

- How can we build such systems?
- What is the parameterization (hypothesis)?
- Composition of simple building blocks can lead to complex systems (e.g. neurons brain)
- Each block has trainable parameters λ_i

- How can we build such systems?
- What is the parameterization (hypothesis)?
- Composition of simple building blocks can lead to complex systems (e.g. neurons brain)
- Each block has trainable parameters λ_i

- Lee et al. "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations"
- 202 Fabio Galasso Fundamentals of Data Science | Winter Semester 2023

- Lee et al. "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations"
- 203 Fabio Galasso Fundamentals of Data Science | Winter Semester 2023

- Lee et al. "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations"
- 204 Fabio Galasso Fundamentals of Data Science | Winter Semester 2023

- Setting
 - generate output y for input x (forward pass)
 - when there is an error, propagate error backwards to update weights (error back propagation)

- Setting
 - generate output y for input x (forward pass)
 - when there is an error, propagate error backwards to update weights (error back propagation)

Summary of Main Ideas in Deep Learning

- Learning of feature extraction (across many layers)
- Efficient and trainable systems by differentiable building blocks
- Composition of deep architectures via non-linear modules
- "End-to-End" training: no differentiation between feature extraction and classification

Thank you

Acknowledges: some slides and material from Bernt Schiele, Mario Fritz, Fei-Fei Li, Justin Johnson, Serena Yeung, Rob Fergus, Rakshith Shetty, Seong Joon Oh

