

CONCURRENT SYSTEMS LECTURE 14

Prof. Daniele Gorla

We shall only consider finite processes (processes without recursive definitions)

- A limited handling of recursion is possible
- Deciding bisimilarity for general processes is undecidable

Inference system = axioms + inference rules

- Soundness: whatever I infer is correct (i.e., bisimiar)
- Completeness: whatever is bisimilar, it can be inferred

Axioms for Sum:

$$\vdash M + \mathbf{0} = M \vdash M_1 + M_2 = M_2 + M_1 \vdash M_1 + (M_2 + M_3) = (M_1 + M_2) + M_3 \vdash M + M = M$$

Axioms for Restriction:

$$\begin{split} &\vdash \mathbf{0} \backslash a = \mathbf{0} \\ &\vdash (\sum_{i} \alpha_{i}.P_{i}) \backslash a = \sum_{i} (\alpha_{i}.P_{i}) \backslash a \\ &\vdash (\alpha.P) \backslash a = \begin{cases} \mathbf{0} & \text{if } \alpha \in \{a, \bar{a}\} \\ \alpha.(P \backslash a) & \text{otherwise} \end{cases} \end{split}$$

Axiom for Parallel:

$$\begin{split} \vdash \sum_{i} \alpha_{i} P_{i} \mid \sum_{j} \beta_{j} Q_{j} &= \sum_{i} \alpha_{i} (P_{i} \mid \sum_{j} \beta_{j} Q_{j}) + \\ \sum_{j} \beta_{j} (\sum_{i} \alpha_{i} P_{i} \mid Q_{j}) + \\ \sum_{\alpha_{i} = \overline{\beta_{j}}} \tau (P_{i} \mid Q_{j}) \end{split}$$

Inference Rules:

$$\begin{array}{l} \vdash P = P & \qquad \begin{array}{l} \vdash P = Q \\ \hline Q = P \end{array}$$

$$\begin{array}{l} \vdash P = Q & \vdash Q = R \\ \hline P = Q & \vdash P = R \end{array}$$

$$\begin{array}{l} \vdash P = Q \\ \hline P = Q \end{array}$$

$$\begin{array}{l} \vdash P = Q \\ \hline P = Q \end{array}$$

Theorem (Soundness): If $\vdash P = Q$ then $P \sim Q$.

Proof.

- for every axiom $\vdash LHS = RHS$, let us consider the relation $\{(LHS, RHS)\} \cup Id$ and prove that it is a bisimulation;
- the inference rules hold for bisimilarity, since it is an equivalence and a congruence.

P is in standard form if and only if $P \stackrel{\triangle}{=} \sum_{i} \alpha_i P_i$ and $\forall_i P_i$ is in standard form.

Lemma 5.2. $\forall P \exists P' \text{ in standard form such that } \vdash P = P'$

Proof. By induction on the structure of P. <u>Base case:</u> $(P \stackrel{\triangle}{=} \mathbf{0})$. It suffices to consider $P' \stackrel{\triangle}{=} \mathbf{0}$ and conclude by reflexivity. Inductive step: We have to consider three cases.

P ≜ P₁|P₂. By induction, we have that ∃ P'₁, P'₂ in standard form such that ⊢ P₁ = P'₁ and ⊢ P₂ = P'₂, where P'₁ = ∑_iα_i.R_i and P'₂ = ∑_jβ_j.Q_j. From these facts, by context closure, it follows that ⊢ P₁|P₂ = P'₁|P₂ and ⊢ P'₁|P₂ = P'₁|P'₂; hence, by transitivity:

$$\vdash \overbrace{P_1|P_2}^{1} = \sum_i \alpha_i R_i \mid \sum_j \beta_j Q_j$$

$$= \sum_i \alpha_i (R_i \mid \sum_j \beta_j Q_j) + \sum_j \beta_j (\sum_i \alpha_i R_i \mid Q_j) + \sum_{\alpha_i = \overline{\beta_j}} \tau(R_i \mid Q_j)$$

$$= \dots$$

$$= P'$$

where the elimination of the parallel from standard forms is repeated until there are no more occurrences of '|' in the process.

1.
$$P \triangleq \sum_{i \in I} \alpha_i P_i$$
. By induction, we have that $\forall P_i \exists P'_i$ in standard form such that $\vdash P_i = P'_i$.

From $\vdash P_1 = P'_1$, by context closure w.r.t. context $\alpha_1 . \Box + \sum_{i \in I \setminus \{1\}} \alpha_i . P_i$, we have that

$$\vdash \alpha_1.P_1 + \sum_{i \in I \setminus \{1\}} \alpha_i.P_i = \alpha_1.P_1' + \sum_{i \in I \setminus \{1\}} \alpha_i.P_i$$

From $\vdash P_2 = P'_2$, by context closure w.r.t. context $\alpha_2 \square + (\alpha_1 . P'_1 + \sum_{i \in I \setminus \{1,2\}} \alpha_i . P_i)$, we have that

$$\vdash \alpha_2.P_2 + (\alpha_1.P_1' + \sum_{i \in I \setminus \{1,2\}} \alpha_i.P_i) = \alpha_2.P_2' + (\alpha_1.P_1' + \sum_{i \in I \setminus \{1,2\}} \alpha_i.P_i)$$

By transitivity and commutativity of choices, we have that

$$\vdash \sum_{i \in I} \alpha_i . P_i = \sum_{i \in \{1,2\}} \alpha_i . P'_i + \sum_{i \in I \setminus \{1,2\}} \alpha_i . P_i$$

From $\vdash P_3 = P'_3$, by context closure w.r.t. context $\alpha_3 . \Box + (\sum_{i \in \{1,2\}} \alpha_i . P'_i + \sum_{i \in I \setminus \{1,2,3\}} \alpha_i . P_i)$, we have that

$$\vdash \alpha_3.P_3 + (\sum_{i \in \{1,2\}} \alpha_i.P_i' + \sum_{i \in I \setminus \{1,2,3\}} \alpha_i.P_i) = \alpha_3.P_3' + (\sum_{i \in \{1,2\}} \alpha_i.P_i' + \sum_{i \in I \setminus \{1,2,3\}} \alpha_i.P_i)$$

and

$$\vdash \sum_{i \in I} \alpha_i . P_i = \sum_{i \in \{1,2,3\}} \alpha_i . P'_i + \sum_{i \in I \setminus \{1,2,3\}} \alpha_i . P_i$$

We can repeat this reasoning until we obtain

$$\vdash \underbrace{\sum_{i \in I} \alpha_i . P_i}_{P} = \underbrace{\sum_{i \in I} \alpha_i . P'_i}_{P'}$$

3. $P \stackrel{\triangle}{=} Q \setminus a$. By induction, we have that $\exists Q'$ in standard form such that $\vdash Q = Q'$, where $Q' = \sum_{i \in I} \alpha_i R_i$. From this and by congruence, it follows that

$$\begin{array}{rcl} & P & & \\ & & \widehat{Q \backslash a} & = & Q' \backslash a & \\ & & = & \sum\limits_{i \in I} (\alpha_i . R_i) \backslash a & \\ & & = & \sum\limits_{i \in I'} \alpha_i (R_i \backslash a) \end{array}$$

where $I' \stackrel{\triangle}{=} \{i \in I : \alpha_i \notin \{a, \bar{a}\}\}$ and the elimination of restriction is repeated until such an operator is totally removed from the process. \Box

Theorem (Completeness): If $P \sim Q$ then $\vdash P = Q$.

Proof. Because of the previous Lemma, we have that $\exists P', Q'$ in standard form such that $\vdash Q = Q'$ and $\vdash P = P'$, where

$$P' \stackrel{ riangle}{=} \sum_{i=1}^n lpha_i.P_i \quad ext{and} \quad Q' \stackrel{ riangle}{=} \sum_{j=1}^m eta_j.Q_j$$

We only have to prove that $\vdash P' = Q'$ and, by transitivity, we would obtain $\vdash P = Q$. This proof is done by induction over the maximum height of the syntactic tree that describes P' and Q', i.e. over $max\{h(P'), h(Q')\}$.

Base case (0): in this case, P' = Q' = 0 and we trivially conclude. Induction:

$$\begin{array}{rcl} P' \xrightarrow{\alpha_1} P_1 & \Rightarrow & P \xrightarrow{\alpha_1} \hat{P} \quad \text{s.t.} \quad P_1 \sim \hat{P} \\ & \Rightarrow & Q \xrightarrow{\alpha_1} \hat{Q} \quad \text{s.t.} \quad \hat{P} \sim \hat{Q} \\ & \Rightarrow & Q' \xrightarrow{\alpha_1} Q'' \quad \text{s.t.} \quad \hat{Q} \sim Q'' \end{array}$$

by definition of Q', it must be that $\alpha_1 = \beta_{j_1}$ and $Q'' = Q_{j_1}$, for some j_1 . By transitivity, we obtain that $P_1 \sim Q_{j_1}$; hence, by induction, it follows that $\vdash P_1 = Q_{j_1}$.

Let us now consider the context

$$C \stackrel{ riangle}{=} lpha_1[] + \sum_{i=2}^n lpha_i . P_i$$

Then

$$- \overbrace{\alpha_{1}.P_{1} + \sum_{i=2}^{n} \alpha_{i}.P_{i}}^{P'} = \beta_{j_{1}}.Q_{j_{1}} + \sum_{i=2}^{n} \alpha_{i}.P_{i}$$

By iterating this reasoning on every summand of P', we can conclude that

$$\begin{split} \vdash P' &= \beta_{j_1}.Q_{j_1} + \sum_{i=2}^n \alpha_i.P_i \\ &= \beta_{j_1}.Q_{j_1} + \beta_{j_2}.Q_{j_2} + \sum_{i=3}^n \alpha_i.P_i \\ &= \beta_{j_1}.Q_{j_1} + \beta_{j_2}.Q_{j_2} + \beta_{j_3}.Q_{j_3} + \sum_{i=4}^n \alpha_i.P_i \\ &= \dots \\ &= \sum_{i=1}^n \beta_{j_i}.Q_{j_i} \end{split}$$

Similarly, we can prove that

$$-Q' = \sum_{j=1}^m lpha_{i_j} . P_{i_j}$$

If we now sum these equalities member-wise, we obtain

┝

$$\vdash P' + \sum_{j=1}^{m} lpha_{i_j} . P_{i_j} = Q' + \sum_{i=1}^{n} eta_{j_i} . Q_{j_i}$$

that, by idempotency, implies $\vdash P' = Q'$.

 \square

Axioms for Sum:

$$\vdash M + \mathbf{0} = M \vdash M_1 + M_2 = M_2 + M_1 \vdash M_1 + (M_2 + M_3) = (M_1 + M_2) + M_3 \vdash M + M = M$$

Axioms for Restriction:

$$\begin{split} &\vdash \mathbf{0} \backslash a = \mathbf{0} \\ &\vdash (\sum_{i} \alpha_{i}.P_{i}) \backslash a = \sum_{i} (\alpha_{i}.P_{i}) \backslash a \\ &\vdash (\alpha.P) \backslash a = \begin{cases} \mathbf{0} & \text{if } \alpha \in \{a, \bar{a}\} \\ \alpha.(P \backslash a) & \text{otherwise} \end{cases} \end{split}$$

 $\vdash P = Q \quad \vdash Q = R$

 $\vdash P = R$

 $\vdash P = Q$

 $\vdash C[P] = C[Q]$

Axiom for Parallel:

$$\begin{split} \vdash \sum_{i} \alpha_{i}.P_{i} \mid \sum_{j} \beta_{j}.Q_{j} &= \sum_{i} \alpha_{i}(P_{i} \mid \sum_{j} \beta_{j}.Q_{j}) &+ \\ \sum_{i} \beta_{j}(\sum_{i} \alpha_{i}.P_{i} \mid Q_{j}) &+ \\ \sum_{i} \beta_{j}(\sum_{i} \alpha_{i}.P_{i} \mid Q_{j}) &+ \\ \sum_{\alpha_{i} = \overline{\beta_{j}}} \tau(P_{i} \mid Q_{j}) &+ \\ \downarrow P = P & \vdash P = Q \\ \vdash Q = P \\ \end{split}$$

Axioms for τ :

$$\vdash \alpha.P = \alpha.\tau.P$$

$$\vdash P + \tau.P = P$$

$$\vdash \alpha.(P + \tau.Q) = \alpha.(P + \tau.Q) + \alpha.Q$$

Example

A server for exchanging messages, in its minimal version, receives a request for sending messages and delivers the confirmation of the reception

Specification:

$$Spec \stackrel{ riangle}{=} send$$
 . \overline{rcv}

The behavior of such a server can be implemented by three processes in parallel:

- One handles the button send for sending;
- another one effectively sends the message (through the restricted action *put*) and waits fort the signal of message reception (through the restricted action *go*);
- the last one gives back to the user the outcome of the sending.

$$\left. \begin{array}{l} S & \stackrel{\triangle}{=} & send . \overline{put} \\ M & \stackrel{\triangle}{=} & put . \overline{go} \\ R & \stackrel{\triangle}{=} & go . \overline{rcv} \end{array} \right\} Impl \stackrel{\triangle}{=} (S|M|R) \backslash \{put, go\}$$

We now want to prove that the specification is equivalent (i.e., weekly bisimilar) to the implementation.

Let us consider the parallel of processes M and R; by using the axiom for parallel, we have

 $\vdash M|R = put.(\overline{go}|R) + go.(M|\overline{rcv})$

By using the same axiom to the parallel of the three processes, we obtain

$$\vdash S|(M|R) = send.(\overline{put}|(M|R)) + put.(\overline{go}|R|S) + go.(\overline{rcv}|S|M)$$

By restricting *put* and *go*, and by using the second axiom for restriction, we have that

We now apply the third axiom for restriction to the three summands:

- $(send.(\overline{put}|M|R)) \setminus \{put, go\} = send.(\overline{put}|(M|R)) \setminus \{put, go\}$, since $send \notin \{put, \overline{put}, go, \overline{go}\}$;
- $(put.(\overline{go}|R|S)) \setminus \{put, go\} = 0;$
- $(go.(\overline{rcv}|S|M)) \setminus \{put, go\} = 0.$

Hence, $\vdash Impl = send.(\overline{put}|(M|R)) \setminus \{put, go\}.$

We now work in a similar way on
$$(\overline{put}|M|R) \setminus \{put, go\}$$

 $\vdash M|R = put.(\overline{go}|R) + go.(M|\overline{rcv})$
 $\vdash (\overline{put}|M|R) \setminus \{put, go\} = \tau.(\overline{go}|R) \setminus \{put, go\}$
 $\vdash Impl = send.\tau.(\overline{go}|R) \setminus \{put, go\}$

By using the first axiom for weak bisimilarity, we obtain $\vdash Impl = send.(\overline{go}|R) \backslash \{put, go\}$

Again, the processes synchronize, now on name go:

$$\vdash Impl = send.\tau.(\overline{rcv}) \setminus \{put, go\}$$

As before, this leads to

$$\vdash Impl = send.(\overline{rcv}.0) \setminus \{put, go\}$$

We now simply use the third axiom for restriction and obtain $\vdash Impl = send.\overline{rcv}.\mathbf{0} \setminus \{put, go\}$

Finally, by the first axiom for restriction, we have that

 $\vdash \mathit{Impl} = \mathit{send}.\overline{\mathit{rcv}}.\mathbf{0}$

