Fundamentals of Data Science

Fundamentals of Data Science Prof. Fabio Galasso

Basic Concepts and Terminology for Image Processing and Computer Vision

Including 2 case studies:

- Recovery of 3D structure
- Object Recognition

Pinhole Camera (Model)

- (simple) standard and abstract model today
 - box with a small hole in it

Camera Obscura

- around 1519, Leonardo da Vinci (1452 1519)
 - http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html

"when images of illuminated objects ... penetrate through a small hole into a very dark room ... you will see [on the opposite wall] these objects in their proper form and color, reduced in size ... in a reversed position owing to the intersection of the rays" illum in tabula per radios Solis, quâm in cœlo contingit: hoc eft,fi in cœlo fuperior pars deliquiũ patiatur,in radiis apparebit inferior deficere,vt ratio exigit optica.

Sic nos exacté Anno .1544. Louanii eclipfim Solis obferuauimus, inuenimusq; deficere paulò plus q dex-

Principle of pinhole....

- ...used by artists
 - (e.g. Vermeer 17th century, dutch)
- and scientists

Digital Images

- Imaging Process:
 - (pinhole) camera model
 - digitizer to obtain digital image

(Grayscale) Image

- 'Goals' of Computer Vision
 - how can we recognize fruits from an array of (gray-scale) numbers?
 - how can we perceive depth from an array of (gray-scale) numbers?

Goals' of Graphics

. . .

- how can we generate an array of (grayscale) numbers that looks like fruits?
- how can we generate an array of (grayscale) numbers so that the human observer perceives depth?

▶ ...

 computer vision = the problem of 'inverse graphics' ...?

										****	****	*****			(II)		2 Martine Contraction
		x = 58	-59	60	61	62	63	64	65	66	67	68	69	70	71	72	R.
y =	41 42 43 44 45 46 47 48 49 50 51	210 206 201 216 221 209 204 214 209 208 208	209 196 207 206 214 212 215 205 209 210	204 203 192 211 211 224 213 215 214 205 211	202 197 201 193 194 199 208 207 205 203 199	197 195 198 202 196 194 191 208 204 202 217	247 210 213 207 197 193 190 180 196 186 194	143 207 156 208 220 204 191 172 187 174 183	71 56 69 57 56 173 214 188 196 185 177	64 63 65 69 63 64 60 69 86 149 209	80 58 57 60 60 60 62 72 62 71 90	84 53 55 55 55 59 66 55 66 63 62	54 53 52 77 46 51 76 49 87 55 64	54 61 53 49 97 62 51 56 57 55 52	57 62 60 62 58 56 49 52 60 45 93	58 51 50 106 48 55 56 48 56 48 56 52	
	52 53 54 55	208 204 200 205	205 206 203 210	209 203 199 202	209 209 236 203	197 195 188 199	194 194 203 197 197	183 188 188 183 196	187 185 190 181	187 183 183 183 173	239 221 196 186	58 75 122 105	68 61 63 62	61 58 58 57	51 60 64 64	56 60 66 63	

Vincent van Gogh Interior of a Restaurant at Arles 1888

Vincent van Gogh Snowy Landscape with Arles in the Background 1888

(C) Linda Carson 2002

(C) Linda Carson 2002

1. Case Study Computer Vision - Recovery of 3D Structure

- take all the cues of artists and 'turn them around'
 - exploit these cues to infer the structure of the world
 - need mathematical and computational models of these cues
- sometimes called 'inverse graphics'

http://www.vrvis.at/ar2/adm/shading/

A 'trompe l'oeil'

- depth-perception
 - movement of ball stays the same
 - location/trace of shadow changes

Another 'trompe l'oeil'

- illusory motion
 - only shadows changes
 - square is stationary

Color & Shading

Color & Shading

Do you still believe what you see?

- Experiment
 - carefully point flash light into your eye from one corner
 - don't hurt yourself!
- Observation
 - you'll see your own blood vessels
 - they are actually in front of the retina
 - we've adapted to their usual shadow

2. Case Study:

Computer Vision & Object Recognition

- is it more than inverse graphics?
- how do you recognize
 - the banana?
 - the glass?
 - the towel?
- how can we make computers to do this?
- ill posed problem:
 - missing data
 - ambiguities
 - multiple possible explanations

35 **Fabio Galasso** Fundamentals of Data Science | Winter Semester 2023

Recognition: the Role of Context

• Antonio Torralba

Recognition: the role of Prior Expectation

• Giuseppe Arcimboldo

One or Two Faces ?

Class of Models: Pictorial Structure

- Fischler & Elschlager 1973
- Model has two components
 - parts
 (2D image fragments)
 - structure (configuration of parts)

Deformations

UNIVERSITÀ DI ROMA

Clutter

Example

Recognition, Localization, and Segmentation

- a few terms
- ... let's briefly define what we mean by that

Object Recognition

- Different Types of Recognition Problems:
 - Object Identification
 - recognize your apple, your cup, your dog
 - Object Classification
 - recognize any apple, any cup, any dog
 - also called: generic object recognition, object categorization, ...
 - typical definition: 'basic level category'

- Recognition and
 - Segmentation: separate pixels belonging to the foreground (object) and the background
 - Localization/Detection: position of the object in the scene, pose estimate (orientation, size/scale, 3D position)

Object Recognition

- Different Types of Recognition Problems:
 - Object Identification
 - recognize your apple, your cup, your dog
 - Object Classification
 - recognize any apple, any cup, any dog
 - also called: generic object recognition, object categorization, ...
 - typical definition: 'basic level category'

Which Level is right for Object Classes?

Basic-Level Categories

- the highest level at which category members have **similar perceived shape**
- the highest level at which a **single mental image** can reflect the entire category
- the highest level at which a person uses similar **motor actions** to interact with category members
- the level at which human subjects are usually fastest at identifying category members
- the first level named and understood by children
- (while the definition of basic-level categories depends on culture there exist a remarkable consistency across cultures...)
- Most recent work in object recognition has focused on this problem
 - Most mature algorithms are in this field

Detection & Recognition of Visual Categories

- cluttered background
 - low interclass variance

Challenges of Visual Categorization

low inter-class variation

large intra-class variation

More than Object Recognition

- Recognition and
 - Segmentation: separate pixels belonging to the foreground (object) and the background

More than Object Recognition

- Recognition and
 - Localization: to position the object in the scene, estimate the object's pose (orientation, size/scale, 3D position)

• Example from David Lowe:

Parameters: 3D position and orientation

Localization: Example Video 1

Localization: Example Video 2

Object Recognition

- Different Types of Recognition Problems:
 - Object Identification
 - recognize your apple, your cup, your dog
 - Object Classification
 - recognize any apple, any cup, any dog
 - also called: generic object recognition, object categorization, ...
 - typical definition: 'basic level category'

- Recognition and
 - Segmentation: separate pixels belonging to the foreground (object) and the background
 - Localization/Detection: position of the object in the scene, pose estimate (orientation, size/scale, 3D position)

Basics of Digital Image Filtering

Basics of Digital Image Filtering

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Object Instance Identification using Color Histograms
- Performance evaluation

Basics of Digital Image Filtering

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Object Instance Identification using Color Histograms
- Performance evaluation

Computer Vision and its Components

- computer vision: 'reverse' the imaging process
 - 2D (2-dimensional) digital image processing
 - 'pattern recognition' / 3D image analysis
 - image understanding

64

Digital Image Processing

- Image Filtering
 - take some local image patch (e.g. 3x3 block)
 - image filtering: apply some function to local image patch

Image Filtering

- Some Examples:
 - what assumptions are you making to infer the center value?

Image Filtering: 2D Signals and Convolution

- Image Filtering
 - to reduce noise,
 - to fill-in missing values/information
 - to extract image features (e.g. edges/corners), etc.
- Simplest case:
 - linear filtering: replace each pixel by a linear combination of its neighbors

f

- 2D convolution (discrete):
 - ▶ discrete Image: I[m,n]
 - ► filter 'kernel': g[k, l]
 - ▶ 'filtered' image: f[m,n]

$$[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

$$f[m,n] \qquad I[k,l] \qquad g[k,l]$$

$$\boxed{18} = \boxed{753} \otimes \boxed{-101}$$

$$\boxed{-101}$$

$$\boxed{-101}$$

$$\boxed{-101}$$

can be expressed as matrix multiplication!

2	3	3	
3	20	2	\rightarrow
3	2	3	

2	3	3
3	3	2
3	2	3

Image Filtering: 2D Signals and Convolution

f[m,n]

- **2D** convolution (discrete): $f[m,n] = I \otimes g = \sum I[m-k,n-l]g[k,l]$
 - discrete Image: *l[m,n]* ►
 - filter 'kernel': g[k,l] ►
 - 'filtered' image: ►

- $\sum I[m-k, n-l]g[k, l] (m, m)$ -1 < k < +1
 - -1 < l < +1

$$\in I[m+1, n+1]g[-1, -1]$$

+I|m+1,n|g|-1,0|

+...

$$(k = -1, l = 0)$$

$$(k = -1, l = +1)$$

- mirror the filter (k and l)
- swipe it across the image
- multiply and sum (k = -1, l = -1)

+I[m+1, n-1]g[-1, +1]

Image Filtering: 2D Signals and Convolution

- 2D convolution (discrete): $f[m,n] = I \otimes g = \sum I[m-k,n-l]g[k,l]$
 - ► discrete Image: I[m,n]
 - filter 'kernel': g[k, l]
 - ▹ 'filtered' image: f[m,n]

- special case:
 - convolution (discrete) of a 2D-image with a 1D-filter

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

Università di Roma

Try it out in GIMP

- You can try out linear filter kernels in the free image manipulation tool GIMP
 available at gimp.org
- open image
- from the menu pick:
 - Filters
 - Generic
 - Convolution Matrix ...
- enter filter kernel in "Matrix"
- press "ok" to apply

000)	Conv	olution M	Aatrix	
				^	
				Ξ	
✓ Pre	view				
Matrix					Border
0	0] [0	0	0	Extend
0	0] [0	0	0	⊖ <u>W</u> rap
		5			
U	-1	3	-1	0	
0	-1		-1		Channels
0	-1 0] <u>3</u>] 0			Channels ☑ Red
0	-1 0 0] 0] 0	-1 0 0	0	Channels ✓ Red ✓ Green
0 0 Di	-1 0 0 visor: 1] 0] 0	-1 0 0 Offset:) 0) 0) 0	Channels ✓ Red ✓ Green ✓ Blue
0 0 Di ^v	-1 0 0 visor: 1 malise	3	0 0 Offset:) 0) 0) 0	Channels ✓ Red ✓ Green ✓ Blue
	-1 0 visor: 1 malise	3	0 Offset:	0	Channels ✓ Red ✓ Green ✓ Blue
0 0 Di Nor	-1 0 0 visor: 1 malise	3 0 0	0 0 Offset:	0	Channels ✓ Red ✓ Green ✓ Blue
0 0 Dir Nor	-1 0 visor: 1 malise] 3] 0] 0	0 0 Offset:		Channels ✓ Red ✓ Green ✓ Blue

$$f[m,n] = I \otimes g = \sum_{i} I[m-k,n]g[k]$$

$$ig_{i} = \int_{0}^{100} \int_{0}$$

Blurring

Blurring Examples

$$f[m,n] = I \otimes g_1 - I \otimes g_2 = I \otimes (g_1 - g_2)$$

original

$$f[m,n] = I \otimes g_1 - I \otimes g_2 = I \otimes (g_1 - g_2)$$

2.0

0

original

1.0

0

$$f[m,n] = I \otimes g_1 - I \otimes g_2 = I \otimes (g_1 - g_2)$$

original

(remember blurring)

original

Blurred (filter applied in both dimensions).

Sharpening

original

Sharpened original

Sharpening Example

Sharpening

after

before

Image Filtering Interim summary

- Images may need low-level adjustment such as filtering, in order to enhance image quality (e.g. denoising) or extract useful information (e.g. edges)
- Filtering for enhancement \rightarrow improve contrast
- Filtering for smoothing \rightarrow removes noise
- Filtering for template matching \rightarrow detect known patterns

Image Filtering: 2D Signals and Convolution

- 2D convolution (discrete): $f[m,n] = I \otimes g = \sum I[m-k,n-l]g[k,l]$
 - ► discrete Image: I[m,n]
 - filter 'kernel': g[k, l]
 - ▹ 'filtered' image: f[m,n]

- special case:
 - convolution (discrete) of a 2D-image with a 1D-filter

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

Linear Systems

- Basic Properties:
 - homogeneity
 T[a X] = a T[X]
 - additivity $T[X_1 + X_2] = T[X_1] + T[X_2]$
 - superposition $T[aX_1 + bX_2] = a T[X_1] + b T[X_2]$
 - Inear systems <=> superposition
- examples:
 - matrix operations (additions, multiplication)
 - convolutions

Filtering to Reduce Noise

- "Noise" is what we're not interested in
 - low-level noise: light fluctuations, sensor noise, quantization effects, finite precision, ...
 - complex noise (not today): shadows, extraneous objects.
- Assumption:
 - the pixel's neighborhood contains information about its intensity

Model: Additive Noise

• Image I = Signal S + Noise N:

Model: Additive Noise

- Image I = Signal S + Noise N
 - i.e. noise does not depend on the signal
- we consider:
 - ► I_i : intensity of i'th pixel
 - $I_i = s_i + n_i$ with $E(n_i) = 0$
 - s_i deterministic
 - n_i, n_j independent for $i \neq j$
 - n_i,n_j i.i.d. (independent, identically distributed)
- therefore:
 - intuition: averaging noise reduces its effect
 - better: smoothing as inference about the signal

Average Filter

- Average Filter
 - replaces each pixel with an average of its neighborhood
 - Mask with positive entries that sum to 1
- if all weights are equal, it is called a BOX filter

Gaussian Averaging (An Isotropic Gaussian)

- Rotationally symmetric
- Weights nearby pixels more than distant ones
 - this makes sense as 'probabilistic' inference

 the pictures show a smoothing kernel proportional to

$$g(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Smoothing with a Gaussian

- Effects of smoothing:
 - each column shows realizations of an image of Gaussian noise
 - each row shows smoothing with Gaussians of different width

Smoothing with a Gaussian

• Example:

Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
 - first convolve each row with a 1D filter
 - then convolve each column with a 1D filter

$$(f_x \otimes f_y) \otimes I = f_x \otimes (f_y \otimes I)$$

- remember:
 - convolution is linear associative and commutative
- Example: separable BOX filter

Example: Separable Gaussian

• Gaussian in x-direction

$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

• Gaussian in y-direction

$$g(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Gaussian in both directions

$$g(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Separable Gaussian

- Gaussian separability:
 - an *n* dimensional Gaussian convolution is equivalent to *n* 1-D Gaussian convolutions

Multi-Scale Image Representation

- Gaussian Pyramids
- Example of a Gaussian Pyramid

High resolution

Low resolution

Motivation: Search across Scales

Irani & Basri

Computation of Gaussian Pyramid

Irani & Basri

Gaussian Pyramid

Fourier Transform in Pictures

 a *very* little introduction on Fourier transforms to talk about spatial frequencies...

Subsampling without Average Filtering

• Subsampling without average filtering leads to aliasing

Original image

Image with spatial aliasing

image source: https://en.wikipedia.org/wiki/Aliasing

Another Example

512

256

• a bar

- in the big images is a hair (on the zebra's nose)
- in smaller images, a stripe
- ▶ in the smallest image, the animal's nose

Basics of Digital Image Filtering

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Object Instance Identification using Color Histograms
- Performance evaluation

Line Drawings: Good Starting Point for Recognition?

Example of Recognition & Localization

David Lowe

Parameters: 3D position and orientation

Example of Recognition & Localization

- David Lowe
 - 1. 'filter' image to find brightness changes
 - 2. 'fit' lines to the raw measurements

Example of Recognition & Localization

- David Lowe
 - 3. 'project' model into the image and 'match' to lines (solving for 3D pose)

3D Model "match"

Parameters: 3D position and orientation

Class of Models

- Common Idea & Approach (in the 1980's)
 - matching of models (wire-frame/geons/generalized cylinders...) to edges and lines

- so the 'only' remaining problem to solve is:
 - reliably extract lines & edges that can be matched to these models...

Actual 1D profile

- Barbara Image:
 - entire image

line 250

 line 250 smoothed with a Gaussian

What are 'edges' (1D)

• Idealized Edge Types:

- Goals of Edge Detection:
 - good detection: filter responds to edge, not to noise
 - good localization: detected edge near true edge
 - single response: one per edge

Edges

- Edges:
 - correspond to fast changes
 - where the magnitude of the derivative is large

Università di Roma

Edges & Derivatives...

Compute Derivatives

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x)$$

- we can implement this as a linear filter:
 - direct:

• or symmetric:

Compute Derivatives

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x)$$

• we can implement this as a linear filter:

Edge-Detection

- based on 1st derivative:
 - smooth with Gaussian
 - calculate derivative
 - finds its maxima

Edge-Detection

• Simplification:

►

remember:

$$\frac{d}{dx}(g\otimes f) = \left(\frac{d}{dx}g\right)\otimes f$$

derivative as well as convolution are linear operations

1D Barbara signal

- Barbara Image:
 - entire image

1D Barbara signal:

note the amplification of small variations

- Barbara Image:
 - entire image

Implementing 1D edge detection

- algorithmically:
 - find peak in the 1st derivative
 - ► but
 - should be a local maxima
 - should be 'sufficiently' large
 - hysteresis: use 2 thresholds
 - high threshold to start edge curve (maximum value of gradient should be sufficiently large)
 - low threshold to continue them (in order to bridge "gaps" with lower magnitude)
 - (really only makes sense in 2D...)

Extension to 2D Edge Detection: Partial Derivatives

- partial derivatives
 - in x direction:

• in y direction:

$$\frac{d}{dx}I(x,y) = I_x \approx I \otimes D_x \qquad \frac{d}{dy}I(x,y) = I_y \approx I \otimes D_y$$

often approximated with simple filters (finite differences):

Finite Differences

Finite Differences responding to noise

- increasing noise level (from left to right)
 - noise: zero mean additive Gaussian noise

Again: Derivatives and Smoothing

- derivative in x-direction: $D_x \otimes (G \otimes I) = (D_x \otimes G) \otimes I$
 - In 1D:

in 2D:

►

130 Fabio Galasso Fundamentals of Data Science | Winter Semester 2023

Again: Derivatives and Smoothing

• derivative in x-direction: $D_x \otimes (G \otimes I) = (D_x \otimes G) \otimes I$

131 Fabio Galasso Fundamentals of Data Science | Winter Semester 2023

Image Filtering

• Edge detection using derivative of Gaussian filter:

Edges along the x axis

Edges along the y axis

What is the gradient ?

What is the gradient ?

- to edge
- gradient magnitude measures edge strength

2D Edge Detection

- calculate derivative
 - use the magnitude of the gradient
 - the gradient is:

$$\nabla I = \left(I_x, I_y\right) = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)$$

the magnitude of the gradient is:

$$\left\|\nabla I\right\| = \sqrt{I_x^2 + I_y^2}$$

the direction of the gradient is:

$$\theta = \arctan\left(I_{y}, I_{x}\right)$$

2D Edge Detection

- the scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered
 - note: strong edges persist across scales
 - 1 pixel

3 pixels

7 pixels

2D Edge Detection

- there are 3 major issues:
 - the gradient magnitude at different scales is different; which to choose?
 - the gradient magnitude is large along a thick trail; how to identify the significant points?
 - how to link the relevant points up into curves?

'Optimal' Edge Detection: Canny

- Assume:
 - linear filtering
 - additive i.i.d. Gaussian noise
- Edge Detection should have:
 - good detection: filter response to edge, not noise
 - good localization: detected edge near true edge
 - single response: one per edge
- then: optimal detector is approximately derivative of Gaussian
- detection/localization tradeoff:
 - more smoothing improves detection
 - and hurts localization

The Canny edge detector

original image (Lena)

thinning (non-maximum suppression)

norm (=magnitude) of the gradient

thresholding

Non-maximum suppression

- Check if pixel is local maximum along gradient direction
 - choose the largest gradient magnitude along the gradient direction
 - requires checking interpolated pixels p and r

Butterfly Example (Ponce & Forsyth)

line drawing vs. edge detection

University of South Florida

Match "model" to measurements?

Edges & Derivatives...

- recall:
 - the zero-crossings of the second derivative tell us the location of edges

Compute 2nd order derivatives

• 1st derivative:

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x)$$

• 2nd derivative:

$$\frac{d^2}{dx^2}f(x) = \lim_{h \to 0} \frac{\frac{d}{dx}f(x+h) - \frac{d}{dx}f(x)}{h} \approx \frac{d}{dx}f(x+1) - \frac{d}{dx}f(x)$$

$$\approx f(x+2) - 2f(x+1) + f(x)$$

- mask for
 - 1st derivative:

2nd derivative:

The Laplacian

• The Laplacian:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• just another linear filter:

$$\nabla^2 (G \otimes f) = \nabla^2 G \otimes f$$

Second Derivative of Gaussian

• in 1D:

• in 2D ('mexican hat'):

1D edge detection

using Laplacian

Approximating the Laplacian

• Difference of Gaussians (DoG) at different scales:

The Laplacian Pyramid

$$L_i = G_i - \operatorname{expand}(G_{i+1})$$

Gaussian Pyramid $G_i = L_i + expand(G_{i+1})$

Laplacian Pyramid

Edge Detection with Laplacian

• sigma = 4

sigma = 2

Basics of Digital Image Filtering

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Object Instance Identification using Color Histograms
- Performance evaluation

Object Instance Identification using Color Histograms

Object Recognition (reminder)

- Different Types of Recognition Problems:
 - Object Identification
 - recognize your apple, your cup, your dog
 - sometimes called:
 "instance recognition"
 - Object Classification
 - recognize any apple, any cup, any dog
 - also called: generic object recognition, object categorization, ...
 - typical definition:
 'basic level category'

Object Identification

- Example Database for Object Identification:
 - COIL-100 Columbia Object Image Library
 - contains 100 different objects, some form the same object class (e.g. cars,cups)

Challenges = Modes of Variation

- Viewpoint changes
 - Translation
 - Image-plane rotation
 - Scale changes
 - Out-of-plane rotation

- Illumination
- Clutter
- Occlusion
- Noise

Appearance-Based Identification / Recognition

- Basic assumption
 - Objects can be represented by a collection of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

- 3D object
- \Rightarrow Fundamental paradigm shift in the 90's

Global Representation

- Idea
 - Represent each view (of an object) by a global descriptor.

- For recognizing objects, just match the (global) descriptors.
- Modes of variation can be taken care of by:
 - built into the descriptor
 - e.g. a descriptor can be made invariant to image-plane rotations, translation
 - incorporate in the training data or the recognition process.
 - e.g. viewpoint changes, scale changes, out-of-plane rotation
 - robustness of descriptor or recognition process (descriptor matching)
 - e.g. illumination, noise, clutter, partial occlusion

Case Study: Use Color for Recognition

- Color:
 - Color stays constant under geometric transformations
 - Local feature
 - Color is defined for each pixel
 - Robust to partial occlusion
- Idea
 - Directly use object colors for identification / recognition
 - Better: use statistics of object colors

Color Histograms

- Color statistics
 - Given: R,G,B for each pixel
 - Compute 1D histograms for the R, G and B, as well as for the luminance
 - E.g. Hist(R) = #(pixels with color R)

3D (Joint) Color Histograms

- Color statistics
 - Given: tri-stimulus R,G,B for each pixel
 - Compute 3D histogram
 - H(R,G,B) = #(pixels with color (R,G,B))

[Swain & Ballard, 1991]

 Embed the image into a "more meaningful" space endowed with some notion of "closeness"

Color Histograms

- Robust representation
 - presence of occlusion, rotation

[Swain & Ballard, 1991]

Color

- One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by: I = R + G + B:
 - "Chromatic representation"

$$r = \frac{R}{R + G + B}$$
$$g = \frac{G}{R + G + B}$$
$$b = \frac{B}{R + G + B}$$

Color

- Observation:
 - Since r + g + b = 1, only 2 parameters are necessary
 - E.g. one can use r and g r+g+b=1
 - and obtains b = 1 r g

- Histogram comparison
 - known objects Database of known objects ► Test image of unknown object ► test image JUICY FRUIT, JUICY FRUIT,

• Database with multiple training views per object

• Retrieved object instances given the query-image color histogram

- Comparison measures
 - Intersection

$$\cap(Q,V) = \sum_{i} \min(q_i, v_i)$$

- Comparison measures
 - Intersection

$$\gamma(Q, V) = \sum_{i} \min(q_i, v_i)$$

- Motivation
 - Measures the common part of both histograms
 - Range: [0,1]
 - For unnormalized histograms, use the following formula

$$\cap(Q,V) = \frac{1}{2} \left(\frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} q_i} + \frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} v_i} \right)$$

- Comparison Measures
 - Euclidean Distance

$$d(Q, V) = \sum_{i} (q_i - v_i)^2$$

- Comparison Measures
 - Euclidean Distance

$$d(Q,V) = \sum_{i} (q_i - v_i)^2$$

- Motivation
 - Focuses on the differences between the histograms
 - ► Range: [0,∞]
 - All cells are weighted equally.
 - Not very discriminant

- Comparison Measures
 - Chi-square

$$\chi^{2}(Q, V) = \sum_{i} \frac{(q_{i} - v_{i})^{2}}{q_{i} + v_{i}}$$

- Motivation
 - Statistical background:
 - Test if two distributions are different
 - Possible to compute a significance score
 - ► Range: [0,∞]
 - Cells are not weighted equally!
 - therefore more discriminant
 - may have problems with outliers (therefore assume that each cell contains at least a minimum of samples)

- Which measure is best?
 - Depends on the application...
 - Both Intersection and χ^2 give good performance.
 - Intersection is a bit more robust.
 - χ^2 is a bit more discriminative.
 - Euclidean distance is not robust enough.
 - There exist many other measures
 - e.g. statistical tests: Kolmogorov-Smirnov
 - e.g. information theoretic: Kullback-Leibler divergence, Jeffrey divergence, ...

- Simple algorithm
 - 1. Build a set of histograms $H = \{M_1, M_2, M_3, ...\}$ for each known object
 - more exactly, for each view of each object
 - 2. Build a histogram T for the test image.
 - 3. Compare T to each $M_k \in H$
 - using a suitable comparison measure
 - 4. Select the object with the best matching score
 - or reject the test image if no object is similar enough (distance above a threshold *t*)

"Nearest-Neighbor" strategy

Color Histograms

- Recognition (here object identification)
 - Works surprisingly well
 - In the first paper (1991), 66 objects could be recognized almost without errors

[Swain & Ballard, 1991]

Discussion: Color Histograms

- Advantages
 - Invariant to object translations
 - Invariant to image rotations
 - Slowly changing for out-of-plane rotations
 - No perfect segmentation necessary
 - Histograms change gradually when part of the object is occluded
 - Possible to recognize deformable objects
 - e.g. pullover
- Problems
 - The pixel colors change with the illumination ("color constancy problem")
 - Intensity
 - Spectral composition (illumination color)
 - Not all objects can be identified by their color distribution.

Basics of Digital Image Filtering

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Object Instance Identification using Color Histograms
- Performance evaluation

Performance evaluation

Performance Evaluation

- How can we say if method A is better than method B for the same task?
- 1. Compare a single number e.g. accuracy (recognition rate), top-k accuracy
- 2. Compare curves e.g. precision-recall curve, ROC curve

Università di Roma

Score-based evaluation

• The recognition algorithm identifies (classifies) the *query* object as matching the *training* image if their *similarity* is above a threshold *t*

Threshold -> Classifier -> Point Metrics

• The recognition algorithm identifies (classifies) the *query* object as matching the *training* image if their *similarity* is above a threshold *t*

Point metrics: Confusion Matrix

• The recognition algorithm identifies (classifies) the *query* object as matching the *training* image if their *similarity* is above a threshold *t*

Th 0.5

Properties:

- Quality of model & threshold decide how columns are split into rows.
- We want diagonals to be "heavy", off diagonals to be "light".

Point metrics: True Positives

Th	TP
0.5	9

Point metrics: True Negatives

Th	TP	TN
0.5	9	8

Point metrics: False Positives

Th	TP	TN	FP
0.5	9	8	2

Point metrics: False Negatives

Th	TP	TN	FP	FN
0.5	9	8	2	1

FP and FN also called Type-1 and Type-2 errors

Point metrics: Accuracy

Th	TP	TN	FP	FN	Acc
0.5	9	8	2	1	.85

Overall accuracy = (TN + TP)/N

Equivalent to 0-1 Loss!

Point metrics: Precision

$$Precision = \frac{TP}{TP + FP}$$

Point metrics: Positive Recall, True Positive Rate, Sensitivity

Th	TP	TN	FP	FN	Acc	Pr	Recall
0.5	9	8	2	1	.85	.81	.9

```
Recall = True positive rate = \frac{TP}{TP + FN} = Sensitivity
```

Trivial 100% recall = pull everybody above the threshold. Trivial 100% precision = push everybody below the threshold except 1 green on top. (Hopefully no gray above it!)

Striving for good precision with 100% recall = pulling up the lowest green as high as possible in the ranking. Striving for good recall with 100% precision = pushing down the top gray as low as possible in the ranking.

Point metrics: Negative Recall, False Positive Rate, Specificity

Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec
0.5	9	8	2	1	.85	.81	.9	0.8

Point metrics: F1-score

Point metrics: Changing threshold

Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec	F1
0.6	7	8	2	3	.75	.77	.7	.8	.733

effective thresholds = # examples + 1

Threshold Scanning

Threshold	TP	ΤN	FP	FN	Accuracy	Precision	Recall	Specificity	F1
1.00	0	10	0	10	0.50	1	0	1	0
0.95	1	10	0	9	0.55	1	0.1	1	0.182
0.90	2	10	0	8	0.60	1	0.2	1	0.333
0.85	2	9	1	8	0.55	0.667	0.2	0.9	0.308
0.80	3	9	1	7	0.60	0.750	0.3	0.9	0.429
0.75	4	9	1	6	0.65	0.800	0.4	0.9	0.533
0.70	5	9	1	5	0.70	0.833	0.5	0.9	0.625
0.65	5	8	2	5	0.65	0.714	0.5	0.8	0.588
0.60	6	8	2	4	0.70	0.750	0.6	0.8	0.667
0.55	7	8	2	3	0.75	0.778	0.7	0.8	0.737
0.50	8	8	2	2	0.80	0.800	0.8	0.8	0.800
0.45	9	8	2	1	0.85	0.818	0.9	0.8	0.857
0.40	9	7	3	1	0.80	0.750	0.9	0.7	0.818
0.35	9	6	4	1	0.75	0.692	0.9	0.6	0.783
0.30	9	5	5	1	0.70	0.643	0.9	0.5	0.750
0.25	9	4	6	1	0.65	0.600	0.9	0.4	0.720
0.20	9	3	7	1	0.60	0.562	0.9	0.3	0.692
0.15	9	2	8	1	0.55	0.529	0.9	0.2	0.667
0.10	9	1	9	1	0.50	0.500	0.9	0.1	0.643
0.05	10	1	9	0	0.55	0.526	1	0.1	0.690
0.00	10	0	10	0	0.50	0.500	1	0	0.667

Recap

- The recognition algorithm identifies (classifies) the *query* object as matching the *training* image if their *similarity* is above a threshold t
- Compare actual outcomes to predicted outcomes using a *confusion matrix (classification matrix)*

	Predicted = 0	Predicted = 1
Actual = 0	True Negatives (TN)	False Positives (FP)
Actual = 1	False Negatives (FN)	True Positives (TP)

N = number of observations

Overall accuracy = (TN + TP)/N Overall error rate = (FP + FN)/N

False positive rate =
$$\frac{FP}{TN + FP}$$
 = 1-SpecificityPrecision = $\frac{TP}{TP + FP}$ True positive rate = $\frac{TP}{TP + FN}$ = Sensitivity = Recall

Performance Evaluation (Overall) Accuracy

#Correct Predictions #Total Examples

Figure 4. Recognition accuracy across different experimental setups on the test data. Oh, ICCV'15

Threshold Value

- The recognition algorithm identifies (classifies) the *query* object as matching the *training* image if their *similarity* is above a threshold *t*
- The lower the *t* the more query images are classified as matching
 - More TP but also more FP
- The higher the *t* the less query images are classified as matching
 - More TN but also more FN
- What value should we pick for *t*?

Receiver Operator Characteristic (ROC)

True positive rate (TPR) • **Receiver Operator Characteristic Curve** • the larger the TPR 0. the larger the recall of actual true matches 0.8 (lower threshold *t*) **Frue positive rate** True positive rate = $\frac{TP}{TP + FN}$ 0.6 0.4 • False positive rate (FPR) 0.2 The larger the FPR • the larger number 0.0 of false alarms 0.2 0.4 0.6 0.0 0.8 1.0 False positive rate (lower threshold *t*) False positive rate = $\frac{FP}{TN + FP}$

Receiver Operator Characteristic (ROC) space

- True positive rate (TPR)
 - the larger the TPR the larger the recall of actual true matches
- False positive rate (FPR)
 - The larger the FPR the larger number of false alarms

- Capture all thresholds simultaneously
- Low threshold *t*
 - Large TPR
 - Large FPR

True positive rate = $\frac{TP}{TP + FN}$

- High threshold *t*
 - Small TPR
 - Small FPR

False positive rate = $\frac{FP}{TN + FP}$

- Choose best threshold *t* for the best trade off
 - cost of failing to identify an object
 - cost of raising the false alarms

True positive rate = $\frac{TP}{TP + FN}$ False positive rate = $\frac{FP}{TN + FP}$

- Choose best threshold *t* for the best trade off
 - cost of failing to identify an object
 - cost of raising the false alarms

True positive rate = $\frac{TP}{TP + FN}$ False positive rate = $\frac{FP}{TN + FP}$

- Choose best threshold *t* for the best trade off
 - cost of failing to identify an object
 - cost of raising the false alarms

True positive rate = $\frac{TP}{TP + FN}$ False positive rate = $\frac{FP}{TN + FP}$

Receiver Operator Characteristic Curve

Performance Evaluation ROC curve

Performance across thresholds

- The area under the ROC curve (AUROC)
- Interpretation
 - Given a random positive and negative, proportion of the time you guess which is which correctly
- Less affected by sample balance than accuracy

Area Under the ROC Curve (AUROC)

- What is a good AUROC?
 - Maximum of 1 (perfect prediction)
 - Minimum of 0.5 (just guessing)

True positive rate = $\frac{TP}{TP + FN}$ False positive rate = $\frac{FP}{TN + FP}$

Performance Evaluation Precision-recall curve

• Preferred for detection, where TN's are otherwise undefined

Confidence

Two models scoring the same data set. Is one of them better than the other?

• Same ranking, and therefore the same AUROC, AUPRC, accuracy!

Log Loss = $\frac{1}{N} \sum_{i=1}^{N} -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i)$.

- Rewards confident correct answers, heavily penalizes confident wrong answers.
- One perfectly confident wrong prediction is fatal.
 -> Well-calibrated model
 - **Proper** scoring rule: Minimized at $\hat{y} = y$

Brier Score =
$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Thank you

Acknowledges: some slides and material from Bernt Schiele, Mario Fritz, Michael Black, Bill Freeman, Fei-Fei, Justin Johnson, Serena Yeung, Yining Chen, Anand Avati, Andrew Ng

