
Autoencoders

Indro Spinelli

Fundamentals of Data Science

Adapted from Roger Grosse, Stephen Schott, Paul Quint, Ian Goodfellow and Geoffrey Hinton

In short
An autoencoder is a type of feed-forward neural network designed to reconstruct
its input x by predicting xhat, where xhat is an approximation of the original input.

The autoencoder incorporates a hidden layer with a significantly smaller
dimensionality than the input. This bottleneck forces the network to learn a
compressed, efficient representation of the data, capturing only the most essential
features necessary for reconstruction.

This constraint ensures that the network does not simply memorize the input but
instead learns meaningful patterns and structures in the data.

Autoencoder

reconstructed

Why Use Autoencoders?
1. Dimensionality Reduction for Visualization

Autoencoders can map high-dimensional data to a lower-dimensional space (e.g., 2D or 3D) to
make it easier to visualize and interpret complex patterns.

2. Data Compression
By learning efficient representations, autoencoders can reduce the file size of data while
retaining key information, making them useful for tasks like image or audio compression.

3. Feature Learning for Downstream Tasks
Autoencoders learn abstract and meaningful features from data in an unsupervised manner.
These learned features can then be applied to supervised tasks, such as classification or
regression, often improving performance.

4. Utilizing Unlabeled Data
Autoencoders are particularly valuable when labeled data is scarce. Since they do not rely on
labels, they can leverage large amounts of unlabeled data to extract useful patterns, making
them a powerful tool in real-world scenarios where labeling is expensive or impractical.

Linear Autoencoder
The simplest form of an autoencoder consists of a single hidden layer, uses linear activation functions,
and optimizes a reconstruction loss based on the squared error. The loss function is defined as:

In this setup, the autoencoder computes the reconstruction as a linear transformation: xhat= UVx

● U and V are weight matrices of the decoder and encoder, respectively.
● Vx represents the encoded representation (or compressed latent representation) of x.
● UVx reconstructs x from its encoded representation.

Because the activations are linear, the overall mapping xhat=UVx is also linear. This makes the network
equivalent to principal component analysis (PCA), where the hidden layer learns a lower-dimensional
projection of the input that minimizes the reconstruction error in terms of squared distances.

 V

 Ux xhatK

Linear Autoencoder
The simplest form of an autoencoder consists of a single hidden layer, uses linear activation functions,
and optimizes a reconstruction loss based on the squared error. The loss function is defined as:

In this setup, the autoencoder computes the reconstruction as a linear transformation: xhat= CCTx

● C and CT are weight matrices of the decoder and encoder, respectively.
● CTx represents the encoded representation (or compressed latent representation) of x.
● CCTx reconstructs x from its encoded representation.

Because the activations are linear, the overall mapping is also linear. This makes the network equivalent to
principal component analysis (PCA), where the hidden layer learns a lower-dimensional projection of the
input that minimizes the reconstruction error in terms of squared distances.

 C
T Cx xhatK

Pythagora
The autoencoder should learn to choose the subspace which minimizes the squared
distance from the data to the projections. This is equivalent to the subspace which
maximizes the variance of the projections.

We do not solve by training but use the closed form solution of the PCA.

PCA on Eigenface
Eigenfaces are the principal components (or
eigenvectors) of a large set of facial images.

These components capture the most important
variations in facial structure across the dataset.

Each face can then be represented as a combination
of these eigenfaces, reducing the dimensionality of
the data.

How to compute them?
Collect a Dataset of Faces

● Start with a set of grayscale images of faces, typically resized to a fixed size (e.g., m×n pixels).
● Flatten each image into a vector, so an image of m×n pixels becomes a vector of length m⋅n.

Center the Data

● Compute the mean face by averaging all the face vectors in the dataset.
● Subtract this mean face from each face vector, so the data is centered around zero.

Compute the Covariance Matrix

● The covariance matrix captures the relationships between the pixel values across the dataset.

Perform PCA

● Find the eigenvectors and eigenvalues of the covariance matrix.
● The eigenvectors are the eigenfaces, and the corresponding eigenvalues indicate the amount of variance each

eigenface captures.
● Sort the eigenfaces by their eigenvalues, keeping only the top k eigenfaces that capture most of the variance.

Representation
Each face can be represented as a weighted sum of eigenfaces

wi are the weights (or coefficients) for each eigenface, found by projecting the
original face onto the eigenfaces.

This transformation compresses the face into a smaller set of coefficients instead
of storing the full image.

Face Recognition
Training

● Compute eigenfaces from a training set of face images.
● Project each face in the training set onto the eigenfaces to get a set of

weights (feature vectors).

Recognition

● Project a new face onto the eigenfaces to obtain its weights.
● Compare these weights to those of known faces using a distance metric
● The closest match identifies the face.

Limitations
Lighting and Pose Sensitivity

Eigenfaces are sensitive to variations in lighting, pose, and facial expressions.

Data Dependency

The eigenfaces are computed from the training dataset, so their effectiveness
depends on the diversity and quality of the training data.

Nonlinearity

PCA is linear, so it struggles to capture complex, nonlinear facial variations.

Deep Autoencoders
Deep nonlinear autoencoders learn to project the data, not onto a subspace, but
onto a nonlinear manifold.

This manifold is the image of the decoder.

Hidden Layers size
Undercomplete Autoencoders

● The size of the hidden layer is smaller than the size of the input layer.
● Key Feature: The embedded space (latent representation) has a lower dimensionality than the input space.
● Advantage: Forces the model to learn compact, meaningful representations rather than simply memorizing

the input data.
● Limitation: May lose some information if the input data is highly complex or high-dimensional.

Overcomplete Autoencoders

● The size of the hidden layer is much larger than the size of the input layer.
● Key Feature: Provides a high-capacity latent space, which can potentially capture richer representations of

the data.
● Challenge: Without proper constraints, the model may overfit by simply copying the input to the output.
● Solution: Regularization techniques such as sparsity constraints (e.g., L1 regularization) or other penalties

are applied to prevent overfitting and encourage meaningful representations.

Stacked Autoencoders
A stacked autoencoder consists of multiple encoding layers and multiple decoding layers.
Introduces hierarchical representations, enabling it to capture increasingly abstract features
of the input data.

Simplified Training
1. Train Layer H1 : Start with a single hidden layer autoencoder to reconstruct the input.
2. Train Layer H2 : Use H1 's output as training data to train the next autoencoder.
3. Stack Layers: Combine H2 with the first autoencoder and repeat the process for additional layers.

This layer-wise training simplifies optimization and ensures meaningful feature learning at each step.

Layers as Lego Pieces
You can pre-train the network using
unlabeled data to learn meaningful
features. Then, fine-tune the dense
layer using labeled data for the specific
task. Often called Semi-Supervised
Learning.

If the data domain or the task changes
it is called Transfer Learning.

Denoising Autoencoders
A denoising autoencoder (DAE) is a variation of the standard autoencoder designed to learn robust,
noise-resistant representations by training the model to reconstruct clean data from noisy inputs.

During training, the input data x is deliberately
noised to create a corrupted version. This noise
could be gaussian noise, salt and pepper, dropout
on the input.

The autoencoder tries to map the noisy input back
to the original, clean version x by learning to extract
useful features from the noisy input.

By training on noisy data, denoising autoencoders
learn to ignore irrelevant features or noise, focusing
on the core structure of the data.

Sparse Autoencoders
A sparse autoencoder is an overcomplete autoencoder where the hidden layer has
more units than the input, but we enforce sparsity—i.e., most hidden units should
have zero activation.

 is the reconstruction error.

 is the sparsity penalty function (e.g., L1 norm:)

 controls the penalty strength.

KL Divergence for Sparsity
Another approach is to penalize the average activation of the hidden units hi across a
mini-batch to match a user-specified target sparsity value p. The target sparsity p represents
the proportion of neurons that should be "active" (non-zero). This can be achieved using the
Kullback-Leibler (KL) divergence between the average activation q and the target sparsity p:

 is the average activation of hidden units over the mini-batch.

p is the target sparsity value, such as 0.1 (10% of hidden units should be active).

