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In short
An autoencoder is a type of feed-forward neural network designed to reconstruct 
its input x by predicting xhat, where  xhat is an approximation of the original input.

The autoencoder incorporates a hidden layer with a significantly smaller 
dimensionality than the input. This bottleneck forces the network to learn a 
compressed, efficient representation of the data, capturing only the most essential 
features necessary for reconstruction. 

This constraint ensures that the network does not simply memorize the input but 
instead learns meaningful patterns and structures in the data.
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Why Use Autoencoders?
1. Dimensionality Reduction for Visualization

Autoencoders can map high-dimensional data to a lower-dimensional space (e.g., 2D or 3D) to 
make it easier to visualize and interpret complex patterns.

2. Data Compression
By learning efficient representations, autoencoders can reduce the file size of data while 
retaining key information, making them useful for tasks like image or audio compression.

3. Feature Learning for Downstream Tasks
Autoencoders learn abstract and meaningful features from data in an unsupervised manner. 
These learned features can then be applied to supervised tasks, such as classification or 
regression, often improving performance.

4. Utilizing Unlabeled Data
Autoencoders are particularly valuable when labeled data is scarce. Since they do not rely on 
labels, they can leverage large amounts of unlabeled data to extract useful patterns, making 
them a powerful tool in real-world scenarios where labeling is expensive or impractical.



Linear Autoencoder
The simplest form of an autoencoder consists of a single hidden layer, uses linear activation functions, 
and optimizes a reconstruction loss based on the squared error. The loss function is defined as:

In this setup, the autoencoder computes the reconstruction as a linear transformation:  xhat= UVx

● U and V are weight matrices of the decoder and encoder, respectively.
● Vx represents the encoded representation (or compressed latent representation) of x.
● UVx reconstructs x from its encoded representation.

Because the activations are linear, the overall mapping xhat=UVx is also linear. This makes the network 
equivalent to principal component analysis (PCA), where the hidden layer learns a lower-dimensional 
projection of the input that minimizes the reconstruction error in terms of squared distances.

 V

 Ux xhatK



Linear Autoencoder
The simplest form of an autoencoder consists of a single hidden layer, uses linear activation functions, 
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Pythagora
The autoencoder should learn to choose the subspace which minimizes the squared 
distance from the data to the projections. This is equivalent to the subspace which 
maximizes the variance of the projections.

We do not solve by training but use the closed form solution of the PCA.



PCA on Eigenface
Eigenfaces are the principal components (or 
eigenvectors) of a large set of facial images. 

These components capture the most important 
variations in facial structure across the dataset. 

Each face can then be represented as a combination 
of these eigenfaces, reducing the dimensionality of 
the data.



How to compute them?
Collect a Dataset of Faces

● Start with a set of grayscale images of faces, typically resized to a fixed size (e.g., m×n pixels).
● Flatten each image into a vector, so an image of m×n pixels becomes a vector of length m⋅n.

Center the Data

● Compute the mean face by averaging all the face vectors in the dataset.
● Subtract this mean face from each face vector, so the data is centered around zero.

Compute the Covariance Matrix

● The covariance matrix captures the relationships between the pixel values across the dataset.

Perform PCA

● Find the eigenvectors and eigenvalues of the covariance matrix.
● The eigenvectors are the eigenfaces, and the corresponding eigenvalues indicate the amount of variance each 

eigenface captures.
● Sort the eigenfaces by their eigenvalues, keeping only the top k eigenfaces that capture most of the variance.



Representation
Each face can be represented as a weighted sum of eigenfaces

wi  are the weights (or coefficients) for each eigenface, found by projecting the 
original face onto the eigenfaces.

This transformation compresses the face into a smaller set of coefficients instead 
of storing the full image.



Face Recognition 
Training

● Compute eigenfaces from a training set of face images.
● Project each face in the training set onto the eigenfaces to get a set of 

weights (feature vectors).

Recognition

● Project a new face onto the eigenfaces to obtain its weights.
● Compare these weights to those of known faces using a distance metric 
● The closest match identifies the face.



Limitations
Lighting and Pose Sensitivity

Eigenfaces are sensitive to variations in lighting, pose, and facial expressions.

Data Dependency

The eigenfaces are computed from the training dataset, so their effectiveness 
depends on the diversity and quality of the training data.

Nonlinearity

PCA is linear, so it struggles to capture complex, nonlinear facial variations.



Deep Autoencoders
Deep nonlinear autoencoders learn to project the data, not onto a subspace, but 
onto a nonlinear manifold.

This manifold is the image of the decoder.



Hidden Layers size
Undercomplete Autoencoders

● The size of the hidden layer is smaller than the size of the input layer.
● Key Feature: The embedded space (latent representation) has a lower dimensionality than the input space.
● Advantage: Forces the model to learn compact, meaningful representations rather than simply memorizing 

the input data.
● Limitation: May lose some information if the input data is highly complex or high-dimensional.

Overcomplete Autoencoders

● The size of the hidden layer is much larger than the size of the input layer.
● Key Feature: Provides a high-capacity latent space, which can potentially capture richer representations of 

the data.
● Challenge: Without proper constraints, the model may overfit by simply copying the input to the output.
● Solution: Regularization techniques such as sparsity constraints (e.g., L1 regularization) or other penalties 

are applied to prevent overfitting and encourage meaningful representations.



Stacked Autoencoders
A stacked autoencoder consists of multiple encoding layers and multiple decoding layers. 
Introduces hierarchical representations, enabling it to capture increasingly abstract features 
of the input data.



Simplified Training
1. Train Layer H1 : Start with a single hidden layer autoencoder to reconstruct the input.
2. Train Layer H2 : Use H1 's output as training data to train the next autoencoder.
3. Stack Layers: Combine H2 with the first autoencoder and repeat the process for additional layers.

This layer-wise training simplifies optimization and ensures meaningful feature learning at each step.



Layers as Lego Pieces
You can pre-train the network using 
unlabeled data to learn meaningful 
features. Then, fine-tune the dense 
layer using labeled data for the specific 
task. Often called Semi-Supervised 
Learning.

If the data domain or the task changes 
it is called Transfer Learning.



Denoising Autoencoders
A denoising autoencoder (DAE) is a variation of the standard autoencoder designed to learn robust, 
noise-resistant representations by training the model to reconstruct clean data from noisy inputs.

During training, the input data x is deliberately 
noised to create a corrupted version. This noise 
could be gaussian noise, salt and pepper, dropout 
on the input.

The autoencoder tries to map the noisy input back 
to the original, clean version x by learning to extract 
useful features from the noisy input.

By training on noisy data, denoising autoencoders 
learn to ignore irrelevant features or noise, focusing 
on the core structure of the data.



Sparse Autoencoders
A sparse autoencoder is an overcomplete autoencoder where the hidden layer has 
more units than the input, but we enforce sparsity—i.e., most hidden units should 
have zero activation.

                             is the reconstruction error.

            is the sparsity penalty function (e.g., L1 norm:             ) 

       controls the penalty strength.



KL Divergence for Sparsity
Another approach is to penalize the average activation of the hidden units hi across a 
mini-batch to match a user-specified target sparsity value p. The target sparsity p represents 
the proportion of neurons that should be "active" (non-zero). This can be achieved using the 
Kullback-Leibler (KL) divergence between the average activation q and the target sparsity p:

                           is the average activation of hidden units over the mini-batch.

p is the target sparsity value, such as 0.1 (10% of hidden units should be active).




