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Face recognition: problems 

• Let’s recall possible factors affecting face recognition performance. 

 

 • Pose 

 

• Illumination 

 

• Expression  

 

• Ageing 

 

• Makeup 

 

• Plastic surgery 

 

• Glasses, scarfs, etc. 

PIE 

A-PIE 

(Malicious) 

Disguise 

Real images: ALL TOGETHER! 
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Face recognition: 2D versus 3D 

• Face recognition in 2D is affected by ALL factors 

• What about using 3D? 

Variation 2D 3D 

Pose Affected NOT Affected 

Illumination Affected NOT Affected 

Expression Affected Affected 

Ageing Affected Affected 

Makeup Affected NOT Affected 

Plastic surgery Affected NOT Affected 

Glasses, scarfes, etc. Affected Affected 

•3D pros: more information, robustness to some distortions, possibility to 

synthetize (approximate) 2D images from virtual 3D poses and expressions 

computed from a 3D model 

•3D cons: cost of devices, computational cost of procedures, possible risk (laser 

scanner is dangerous for the eye 

•In the middle: techniques to approximate a 3D model from 2D image(s) 

Unfortuntely, no face 

representation is robust 

enough to all kinds of 

variations/distortions 

Possible face spaces/representations 

• 2D 

– Intensity Image: the usual way we think about a face image, a 2D grid where the value 

of each pixel is given by the intensity of the illumination reflexed  in that point, which 

depends on the kind of surface and on the kind of illumination, and  which can be 

expressed as a grey value or in colors according to a chosen color space (e.g., RGB). 

– Images from other sensors : e.g.,  thermal iages or NIR images 

– Processed Image: the result of processing an intensity image with some filter or 

transformation (e.g., wavelets or LBP). 
 

• 2.5D 

– Range Image: a 2D grid where the values of each pixel represents the distance between 

the point and the light source; it is usually expressed in grey levels, but cal also be 

expressed in some color space (typically RGB), and the name derives from the fact that 

values represent an information in the 3D space without building a real 3D model. 
 

• 3D 

– Shaded Model: a structure made of points and polygons connected in the 3D space; 

each polygon represents a very small face patch, and the smaller the patched, the better 

the 3D reconstruction.  
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Possible face spaces/representations 

2D 2.5D 

3D 
Fusion of range image with thermal image 

Possible face spaces/representations 

 Very broadly speaking, we can say that: 

 

• 2D images encode the result of the interaction between the light coming from a 

source and the objects in the scene, according to their reflectance properties 

 

• 2.5D images and 3D models encode the result of the interaction between the 

(structured) light or other beam coming from a source and the objects in the scene, 

according to their shape properties 
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3D acquisition 

• Stereoscopic cameras: 

– The object (face) is captured by one or more stereoscopic cameras with different 

points of view 

– A set of relevant features is located on on image and the corresponding sets of 

features are searched for in the other images  

– The position of each relevant point on the depth axix is given by the geometrical 

relation among homologous points.  

– Low cost, medium accuracy, low robustness to illumination, real time capture 

Past application: expanded user perception 

Present  application: digital 3D models 

3D acquisition 

• Structured light scanner: 

– A single light pattern is projected along the surface (face) 

– The pattern is deformd by the 3D structure of the face and the deformation gives the 

measure of the depth for each point 

– The capture must be repeated from different points of view to obtain a full 3D 

model 

– Medium-high cost, medium-high accuracy, medium-high robustness to illumination, 

3-8 seconds per scan, NOT DANGEROUS FOR THE EYES 

From: http://fab.cba.mit.edu/content/processes/structured_light/ 

Actually, the result is a 2.5D image 

Note: Microsoft Kinect uses a pattern of projected infrared points to generate a dense 3D image. 



5 

3D acquisition 
• Laser scanner: 

– A single laser beam is projected along the surface (face) 

– The beam is deformd by the 3D structure of the face and the deformation gives the 

measure of the depth for each point 

– The capture must be repeated from different points of view to obtain a full 3D 

model 

– Medium-high cost, high accuracy, high robustness to illumination, 6-30 seconds per 

scan, DANGEROUS FOR THE EYES 

Preprocessing of 3D scans 

 

• Ideal results … 

 

• … but 3D scans (2.5D images) present  

some problems 
 

• Noise removal: spikes (filters),  

clutter(manually),  

noise(median filter) 
 

• Holes filling (Gaussian smoothing,  

linear interpolation, symmetrical interpolation,  

morphological operators) 
 

• Smoothing + alignment 
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From 2.5D representation to 3D model 

• A 3D model is constructed by integrating several 2.5D face scans which are 

captured from different views: 

– 1: for each 2.5D image a cloud of 3D points  is generated, with x and y 

coordinates equally spaced and z (depth) coordinate derived from the value 

in the 2.5D image 

– 2: the cloud of points is triangularized (a mesh of adjacent triangles is 

derived)  

• Example from 

http://pointclouds.org/documentation/tutorials/greedy_projection.php: 

«The method works by maintaining a list of points from which the mesh can be 

grown (“fringe” points) and extending it until all possible points are connected. It 

can deal with unorganized points, coming from one or multiple scans, and having 

multiple connected parts. It works best if the surface is locally smooth and there are 

smooth transitions between areas with different point densities. 

Triangulation is performed locally, by projecting the local neighborhood of a point 

along the point’s normal, and connecting unconnected points.” 

 

From 2.5D representation to 3D model 

http://pointclouds.org/documentation/tutorials/greedy_projection.php
http://pointclouds.org/documentation/tutorials/greedy_projection.php
http://pointclouds.org/documentation/tutorials/greedy_projection.php
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3D model 
• A polygon is a sequence of coplanar points connected by segments 

• Coplanarity is what causes the approximation when we represent a surface through 

a mesh of polygons: the smaller the polygons, the better the approximation. 

• A side is a segment connecting two vertices 

• A polygon is composed of a set of sides (the first vertex of the first side 

corresponds to the second vertex of the last side) 

• Each vertex in the mesh is adjacent to two sides at least 

• Each side belongs to one polygon at least 

• How can we determine the orientation of a surface in the 3D space? We use the 

normals (to vertices or to polygons). 

The  normal to a polygon is a vector 

perpendicular to the plane where the 

polygon lies: it identifies the orientation of 

the polygon in the space and is computed by 

the cross product of two vectors in the plane 

The  normal to a vertex is the (normalized) 

sum of the (unit lenght) normals to its 

adjacent polygons: it identifies the 

orientation of the vertex in the space 

3D model 

• After building the polygonal mesh (geometrical structure) it is necessary to assign 

colors to vertex and/or polygons (perceptive structure). 

• It is possible to assign a color to a vertex 

• It is possible to assign a color to a polygon according to the colors of its vertices: 

– a uniform colore derived from the sum of the colors of the vertices 

– a varying color depending from the colors of the vertices and from the distances of 

each point of the polygon from the different vertices 

• Texture mapping: used to compute position and orientation of a texture on a 

surface 

– Problem: how to map each texture pixel on the correct surface point? 

 

– It is possible to use different kinds of projections 

https://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1.htm 

planar cylindrical spherical box 
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3D model 

3D model 
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From 2D representation to 3D model: shape from 

shading 

• Shading as a cue for shape reconstruction 

• What is the relation between intensity and shape? 

– Reflectance Map 

• The computation of the map is performed assuming a Lambertian surface 

– Lambertian reflectance is the property that defines an ideal "matte" or diffusely 

reflecting surface. The apparent brightness of such a surface to an observer is 

the same regardless of the observer's angle of view. More technically, the 

surface's luminance is isotropic (isotropic radiation has the same intensity 

regardless of the direction of measurement), and the luminous intensity obeys 

Lambert's cosine law: the radiant intensity or luminous intensity observed from 

an ideal diffusely reflecting surface or ideal diffuse radiator is directly 

proportional to the cosine of the angle θ between the observer's line of sight 

and the surface normal  

• In general it is not possible to recover shape from a single image  add 

information about shading 

 

From 2D representation to 3D model: shape from 

shading 

• The procedure starts with an ensemble of shapes of related 3D objects 

(faces), and uses standard statistical techniques such as PCA to derive a 

dimensionally reduced representation for shapes in the same class.  

• Atick, Griffin & Redlich in 1996 used a database of several hundred laser-

scanned heads’ to run the procedure for the class of 3D human heads.  

• They showed that principal components provide an excellent low-

dimensional parameterization of head shape that maintains facial detail and 

identity of the person.  

• They used this representation to solve the shape-from-shading problem for 

any human head 

• They can recover an accurate 3D surface of the head/face of any person 

from a single 2D image of the face. 
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From 2D representation to 3D model: shape from 

shading 

• A recent approach from Kemelmacher-Shlizerman and Basri in 2011 

avoids representing input faces as combinations (of hundreds) of stored 3D 

models, and uses only  the input image as a guide to ”mold” a single 

reference model to reach a reconstruction of the sought 3D shape. 

From 2D representation to 3D model: morphable 

models 

• This technique uses morphing (typical of image graphics) 

 

• The procedure starts from a generic initial 3D model (morphable model) 

and arrives to a 3D model for a specific subject 

 

• The initial approach by Blanz and Vetter proposed in 1999 uses a single 

image, but to improve the results also 2 or 3 images of the face can be used 

(e.g., frontal, profile, 45°) 

 

• Shape and texture of the generic model are manipulated to adapt to the 

captured images 

 

• Morphable models also allow to synthetize face expressions approximating 

the possible expressions of a specific subject 
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From 2D representation to 3D model: morphable 

models 

Figure 

The figure shows an application of our 

approach. Matching a morphable 

model atomatically to a single sample 

image (1)  of a face results in a 3D 

shape (2) and a texture map estimate. 

The texture estimate can be improved 

by additional texture extraction (4). The 

3D model is rendered back into the 

image after changing facial attributes, 

such as gaining (3) and loosing weight 

(5), frowning (6), or being forced to 

smile (7). 

(from: 

http://gravis.cs.unibas.ch/Sigg99.html) 

From 2D representation to 3D model: morphable 

models 

• The morphable model is based on a data set of 3D faces. Morphing between faces 

requires full correspondence (alignment) between all of the faces. 

• The geometry of a face is represented by a shape vector composed of the set of X, 

Y, Z coordinated of the n 3D vertices S=(X1, Y1, Z1, …, Xn, Yn, Zn)
T 3n 

• A similar vector represent the texture of the face through RGB values. 

• A morphable face model is  constructed using a data set of m exemplar faces, each 

represented by its Si and Ti vectors 

• New shapes and textures can be obtained through a linear combination of the 

shapes and textures of the m exemplars 
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From 2D representation to 3D model: morphable 

models 

From: Blanz and Vetter. 1999 

From 2D representation to 3D model: morphable 

models 

From: Blanz and Vetter. 1999 
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Possible configurations 

PROBE 

2D 3D 

 

 

2D 

 

 

 

3D 

G

A

L

L

E

R

Y

 

From: http://web.mit.edu/gevang/www/research.html 

From: Blanz e Vetter, 2013 

From:  http://www.cc.gatech.edu/conferences/3DPVT08/ 

Program/Session-Recognition.html 

(Non exactly 

what we 

would 

expect … 

3D is an 

intermediate 

step)… 

From the lecture by Gabriele Sabatino «3D face recognition» 

 in the course «Sistemi Biometrici» by Professor Michele Nappi – University of Salerno 

http://www.cc.gatech.edu/conferences/3DPVT08/
http://www.cc.gatech.edu/conferences/3DPVT08/
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3D features 

• 3D face recognition algorithms often work on local and global curvature of the face 

model.  

• In particular, it is possible to extract the information concerning the shape of a 3D 

face by analyzing the local curvature of the surface. 

• Examples: 

Crest Lines: selecting areas with the greatest curvature 

Local Curvature: representing the local curvature with a color 

Local Features: segmenting the face into regions of interest  

3D alignement: coarse 

• Alignment can be performed using landmarks 

1) Find a finite number of characteristic points of the face (eye corners, nose tip, 

center of the mouth, etc.).  

2) Align faces (rotation, translation, scaling) by minimizing the distance between 

corresponding points  

Points can be located on the 2D image or directly on the 3D model. 
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3D alignment: fine 

• Alignment between models is often required: the ICP (Iterative Closest Point) algorithm 

is widely used for geometric alignment of three dimensional models when an initial 

estimate of the relative pose is known. 

• The ICP algorithm (Iterative ClosestPoint) is based on the calculation of "volume 

difference" between two 3D surfaces. 

– Given two 3D surfaces:  

1. Find an initial match between the two surfaces (mapping of points, surfaces, lines, 

curves)  

2. Compute the distance between the two surfaces by the least squares method  

3. Compute the transformation which minimizes such distance 

4. Perform the transformation and reiterate the procedure until the distance is less 

than a threshold. 

 ICP is very accurate but 

computationally expensive and 

does not always converge to the 

optimal solution 

3D face recognition with normal maps 

a) Acquisition and generation of the face.  

 

b) Projection of geometry from 3D space to a 2D space. 

 

c) Generation of the normal map. 

Normal maps are commonly stored as regular RGB images where the RGB components 

correspond to the X, Y, and Z coordinates, respectively, of the surface normal. 
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3D face recognition with normal maps 

• The components of the normal (unit vectors) are sampled with a triple RGB 

(Red / Green / Blue) . 

• La length of the vector component is represented by the intensity of the 

color (e.g., if a unit vector nx is very long then the pixel will have a very 

high intensity of red) 

3D face recognition with normal maps 

• Using the normal map we obtain a two-dimensional representation of three-

dimensional information. 

• The information about the curvature of a model is represented by the set of 

the surface normals 

• Reading and processing a 2D image is much faster than reading and 

processing a 3Dmodel . 
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3D face recognition with normal maps 

• The difference map is the difference image between two normal maps. 

 

• Each pixel of the difference map represents the angular distance between 

two normal maps in that point. 

3D face recognition via morphable models: FaceGen 

modeller 

• Facegen Modeller is a commercial tool able to generate the 3D model of the face of 

an individual “instrumented” with an underlying structure capable of simulating the 

"dynamics" of the face. 

 • As we have shown, the algorithm is based on 

fitting a model "generic" (morphable-model) to the 

shape and color of the final model  

      of the subject to be captured. 

• The adaptation of the morphable model to the final 

model is driven by a set of facial features extracted 

directly from the photos. 
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3D face recognition via morphable models: FaceGen 

modeller 

• Morphable-models are a powerful tool, allowing you to generate synthetic facial 

expressions 

• Synthetic facial expressions can be used to obtain a good approximation or real 

facial expressions that an individual may have during the process of acquisition, 

and can be used in some cases to add samples to the gallery or to reproduce probe 

expression on the fly … 

 

 

 

 

 

 

• … but also to simulate aging … 

3D Face Recognition using iso-Geodesic Stripes (2010) 

• Method proposed by Berretti, Del Bimbo and Pala in 2010 

 

• Stuff for next slides taken from: 

S. Berretti, A. Del Bimbo, P. Pala. "3D Face Recognition using iso-

Geodesic Stripes," IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol.32, no.12, pp.2162-2177, December 2010.  
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3D Face Recognition using iso-Geodesic Stripes (2010) 

Preliminary considerations: 

• 3D face models are insensitive to illumination and pose changes but … 

•  … they are even more sensitive than 2D images to face expressions  

• in presence of an expression change, point positions on the 3D face surface 

can exhibit large variations. 

 

Important observations: 

• geodesic distances (we can assume that the geodesic is the shortest path 

between two points in a curved space) are slightly affected by changes of 

facial expressions: 

• the geometry of convex face regions is less affected by changes of facial 

expressions than concave regions. 

3D Face Recognition using iso-Geodesic Stripes (2010) 

• 3D face recognition is computationally expensive.  

• Some studies have demonstrated that the Euclidean and geodesic distances 

and the angles between as many as 47 fiducial points may suffice to capture 

most of relevant facial information…  

 

• … however in practice automatic detection of fiducial points is difficult … 

 

• … and the full 3D face surface information must be exploited for matching. 

 

• The conversion of 3D scans to efficient and meaningful descriptors of face 

structure is crucial to perform fast processing and particularly to permit 

indexing over large datasets for identification. 
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3D Face Recognition using iso-Geodesic Stripes (2010) 

• In this approach, all the points of the face are taken into account so that the complete geometrical 

information of the 3D face model is exploited. 
 

• The relevant information is encoded into a compact representation in the form of a graph and face 

recognition is finally reduced to matching the graphs. 
 

• Face graphs have a fixed number of nodes, that respectively represent iso-geodesic facial stripes 

of equal width and increasing distance from the nose tip. 
 

• Arcs between pairs of nodes are annotated with descriptors referred to as 3D Weighted 

Walkthroughs (3DWWs), that capture the mutual spatial displacement between all the pairs of 

points of the corresponding stripes and show smooth changes of their values as the positions of 

face points change. 
 

• This representation has the great advantage of a very efficient computation of face descriptors and 

a very efficient matching operation for face recognition. 
 

• The method obtained the best ranking at the SHREC 2008 contest 

Weighted Walkthroughs in 2D and 3D 

• In a two-dimensional Cartesian reference system with X, Y coordinate axes, given two 

generic points a = (xa; ya) and b = (xb; yb), their projections on each of the two axes can 

take three different orders (b with respect to a): before, coincident, or after, for a total 

number of nine possible cases of two-dimensional displacements between a and b.  

• Each displacement can be encoded by a pair of indexes <i, j>, with i and j taking values 

in {-1, 0, +1}: 

 

 

• A displacement can be regarded as a walkthrough from a to b 

 • Given two continuous regions A and B, points of A can be connected 

to points of B by walkthroughs.  

• The number of unique pairs (a, b) with a  A and b  B that are 

connected by the same walkthrough <i, j> can be measured and is 

denoted as wi,j (A,B)  

• The 3×3 matrix w(A,B) of the weights is referred to as 2D Weighted 

Walkthrough (2DWW), and can be used to model the relative 

displacement between the two sets.  

• Intuitively, 2D Weighted Walkthroughs can measure the mutual 

spatial distributions of the masses of two 2D regions. 

• Extension to 3D of the above takes to the definition of 3DWW 

2D walkthrough <i, j> = <+1, -1> 
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Directional indexes 

• Directional indexes are aggregate measures that take values in [0; 1] and account 

for directional information between two 3D spatial entities.  

• Directional Indexes  can be directly derived from the weights of the 3DWW matrix. 

Iso-geodesic stripes 

• Each face is partitioned into a fixed number of iso-geodesic stripes of equal width, 

pseudo-concentric and centered on the nose tip fiducial point.  

• The mutual displacement between each pair of stripes is measured by computing 

the 3DWWs between all the pairs of points of the two stripes. 

• Face stripes are obtained by: 

–  computing the normalized geodesic distance 𝛾  between each face point and the nose 

tip (using the Dijkstra’s algorithm applied to the points of the surface). 

– quantizing 𝛾  values into N intervals c1, …, cN, so that the i-th stripe collects all the 

face points that have values of 𝛾  within the interval ci  

– the normalization factor is the Euclidean eyes-to-nose distance (i.e., sum of 

distances between the nose tip and the two endocanthions): this guarantees 

invariance with respect to scaling and expression changes. 

Anthropometric landmarks: Exocanthion (ex), endocanthion 

(en), palpebrale superius (ps),  inferius (pi), and center of pupil 
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3Dww features 

• Under appropriate design choices, face partitioning into iso-geodesic stripes of equal width 

and calculation of 3DWWs between stripes provides an effective representation of 3D 

faces allowing to distinguish facial differences due to different facial traits of different 

individuals from differences induced by facial expressions of the same individual. 

(a) Sample face models (stripes 4 and 7 evidenced). B, C: Models of the same individual with neutral and 

smiling expression; A: Model of a different individual with neutral expression. (b) Projections of the pairs 

of face stripes on the coordinate planes. (c) Measures of 3DWW directional indexes wH, wV , wD for the 

lower part of the pair of stripes of each model. wH, wV , wD are three aggregate measures that can be 

extracted from w(A, B)  that express the percentage of pairs of points (a; b), such that b is on the right of 

a, b is above a and b is in front of a respectively.   

3DWW features 

1. Geodesic distances between two facial points keep sufficiently stable under expression 

changes  the large majority of the points of each stripe still remain within the same 

stripe, even under facial expression changes. 

2. Only few parts of the face are affected by deformations due to expressions. If P1 and P2 are 

two generic points on the 3D face surface with neutral expression, and P’1 = P1 + P1 and 

P’2 = P2 + P2  are the new points under a generic expression, the displacement between 

P’1   and P’2 is: (P’2  - P’1) = (P2 – P1 ) + ( P2 -  P1 )  

– the two terms account for the displacement (P2 – P1 ) on the neutral face—that depends on 

the original face geometry—and the deformation of the face geometry due to the 

expression ( P2 -  P1 ).  

– due to the constrained elasticity of the skin, neighbor points can be assumed to feature 

very similar motion vectors for moderate facial expressions in most parts of the face; 

according to this, for all these points the term ( P2 -  P1 ) is negligible and the mutual 

displacement between the two points is mainly determined by the geometry of the neutral 

face. 

– this property is preserved by 3DWWs that provide an integral measure of displacements 

between pairs of points. 

3. Due to the property of continuity of 3DWWs, small variations of the mutual displacement 

between a limited number of points yield small variations of the 3DWWs descriptor. 
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3DWW features 

• Reasonable choices for the stripe width, the number of stripes, face partitioning and 

relative weighting of the different parts can make the described properties hold for the 

whole face representation.  

• Experiments show that use of 9 stripes of width 1cm yields good invariance to facial 

expressions of the same individual and discrimination between different individuals. 

• To account for the larger deformation of the mouth area with respect to the nose area, each 

stripe is partitiones into three parts lower (L), upper-left (UL) and upper-right (UR) with 

respect to the coordinates of the nose tip. 

• Iso-geodesic stripes and 3DWW computed between pairs of stripes (inter-stripe 3DWW) 

and between each stripe and itself (intra-stripe 3DWW), are collected into a a graph 

representation where stripes are used to label the graph nodes and 3DWWs to label the 

N(N + 1)/2 resulting graph edges. 

• The similarity between two 3D faces reduces to matching their corresponding graphs. 

Actually, since there is an unambiguous ordering of stripes from the nose tip to the border 

of the face model, the graph matching problem is reduced to the computation of a distance 

between multidimensional vectors, by comparing homologous stripe pairs. 

3DWW matching 

Matching of two 3D face graph models for the upper-left part of the face. Matching distances between pairs of 

stripes in the two models are reported. 

For homologous pairs of stripes in two faces, a distance D that accounts for how much the 

spatial distributions between points of the two stripes differ from each other, can be defined 

directly from the values of the differences between corresponding directional indexes: 
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3DWW matching 

• The measure of the similarity between two face models represented through the graphs 

P and G with nodes pk and gk is derived as : 

 

 

 

 

 

 

• Differences between faces of two individuals are measured by computing the 3DWW 

for each pair of stripes, separately in the three face parts for each face, and then 

comparing the 3DWWs of homologous pairs of the two faces. The final dissimilarity 

measure is obtained by averaging distances in the three parts. 

 

 

 

 

 

3DWW matching 

• Face scans and distances between stripes 4 and 7 (for UL, UR and L parts): scans A, B, C and D show the 

same person under different facial expressions (from neutral to laugh); scan E shows a different person 

with neutral expression. It can be noticed that different expressions of the same person do not alter 

significantly the values of the distances. Larger differences are found instead between different persons. 

 

•  In particular, stripes 4 and 7 are considered in that stripe 4 typically covers a part of the face that remains 

almost unchanged under expression changes, and stripe 7 instead includes points that typically change 

their position with facial expressions. 
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