Biometric Systems Lesson 7: Face recognition – 3D

Maria De Marsico demarsico@di.uniroma1.it

Face recognition: 2D versus 3D

- Face recognition in 2D is affected by ALL factors
- What about using 3D?

Variation	2D	3D
Pose	Affected 🔴	NOT Affected
Illumination	Affected	NOT Affected
Expression	Affected 🔴	Affected •
Ageing	Affected 🔴	Affected •
Makeup	Affected 🔴	NOT Affected
Plastic surgery	Affected 🔴	NOT Affected
Glasses, scarfes, etc.	Affected	Affected

Unfortuntely, no face representation is robust enough to all kinds of variations/distortions

•3D pros: more information, robustness to some distortions, possibility to synthetize (approximate) 2D images from virtual 3D poses and expressions computed from a 3D model

- •3D cons: cost of devices, computational cost of procedures, possible risk (laser scanner is dangerous for the eye
- •In the middle: techniques to approximate a 3D model from 2D image(s)

- 2.5D
- Range Image: a 2D grid where the values of each pixel represents the distance between the point and the light source; it is usually expressed in grey levels, but cal also be expressed in some color space (typically RGB), and the name derives from the fact that values represent an information in the 3D space without building a real 3D model.
- 3D
- Shaded Model: a structure made of points and polygons connected in the 3D space; each polygon represents a very small face patch, and the smaller the patched, the better the 3D reconstruction.

Present application: digital 3D models

From: http://fab.cba.mit.edu/content/processes/structured_light/ Note: Microsoft Kinect uses a pattern of projected infrared points to generate a dense 3D image.

• Smoothing + alignment

From 2.5D representation to 3D model

000

- A 3D model is constructed by integrating several 2.5D face scans which are captured from different views:
- 1: for each 2.5D image a cloud of 3D points is generated, with x and y coordinates equally spaced and z (depth) coordinate derived from the value in the 2.5D image
- 2: the cloud of points is triangularized (a mesh of adjacent triangles is derived)

• Example from <u>http://pointclouds.org/documentation/tutorials/greedy_projection.php</u>:

«The method works by maintaining a list of points from which the mesh can be grown ("fringe" points) and extending it until all possible points are connected. It can deal with unorganized points, coming from one or multiple scans, and having multiple connected parts. It works best if the surface is locally smooth and there are smooth transitions between areas with different point densities.

Triangulation is performed locally, by projecting the local neighborhood of a point along the point's normal, and connecting unconnected points."

The normal to a polygon is a vector perpendicular to the plane where the polygon lies: it identifies the orientation of the polygon in the space and is computed by the cross product of two vectors in the plane The normal to a vertex is the (normalized) sum of the (unit lenght) normals to its adjacent polygons: it identifies the orientation of the vertex in the space

https://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1.htm

- Shading as a cue for shape reconstruction
- What is the relation between intensity and shape?
 - Reflectance Map

- The computation of the map is performed assuming a Lambertian surface
 - Lambertian reflectance is the property that defines an ideal "matte" or diffusely reflecting surface. The apparent brightness of such a surface to an observer is the same regardless of the observer's angle of view. More technically, the surface's luminance is isotropic (isotropic radiation has the same intensity regardless of the direction of measurement), and the luminous intensity obeys Lambert's cosine law: the radiant intensity or luminous intensity observed from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of sight and the surface normal
- In general it is not possible to recover shape from a single image \rightarrow add information about shading
 - From 2D representation to 3D model: shape from shading
 - The procedure starts with an ensemble of shapes of related 3D objects (faces), and uses standard statistical techniques such as PCA to derive a dimensionally reduced representation for shapes in the same class.
 - Atick, Griffin & Redlich in 1996 used a database of several hundred laserscanned heads' to run the procedure for the class of 3D human heads.
 - They showed that principal components provide an excellent lowdimensional parameterization of head shape that maintains facial detail and identity of the person.
 - They used this representation to solve the shape-from-shading problem for any human head
 - They can recover an accurate 3D surface of the head/face of any person from a single 2D image of the face.

0000

From 2D representation to 3D model: shape from shading

A recent approach from Kemelmacher-Shlizerman and Basri in 2011 avoids representing input faces as combinations (of hundreds) of stored 3D models, and uses only the input image as a guide to "mold" a single reference model to reach a reconstruction of the sought 3D shape.

Fig. 1. 3D reconstruction of a face from an image downloaded from the internet using our algorithm. We present the input image (top left), the reconstructed shape viewed from three viewpoints (top right), and the image overlay of the reconstructed shape (bottom right).

- This technique uses morphing (typical of image graphics)
- The procedure starts from a generic initial 3D model (morphable model) and arrives to a 3D model for a specific subject
- The initial approach by Blanz and Vetter proposed in 1999 uses a single image, but to improve the results also 2 or 3 images of the face can be used (e.g., frontal, profile, 45°)
- Shape and texture of the generic model are manipulated to adapt to the captured images
- Morphable models also allow to synthetize face expressions approximating the possible expressions of a specific subject

From 2D representation to 3D model: morphable models

.

Figure

The figure shows an application of our approach. Matching a morphable model atomatically to a single sample image (1) of a face results in a 3D shape (2) and a texture map estimate. The texture estimate can be improved by additional texture extraction (4). The 3D model is rendered back into the image after changing facial attributes, such as gaining (3) and loosing weight (5), frowning (6), or being forced to smile (7). (from:

http://gravis.cs.unibas.ch/Sigg99.html)

- The morphable model is based on a data set of 3D faces. Morphing between faces requires full correspondence (alignment) between all of the faces.
- The geometry of a face is represented by a shape vector composed of the set of X, Y, Z coordinated of the *n* 3D vertices $S=(X_1, Y_1, Z_1, ..., X_n, Y_n, Z_n)^T \in \Re^{3n}$
- A similar vector represent the texture of the face through RGB values.
- A morphable face model is constructed using a data set of *m* exemplar faces, each represented by its S_i and T_i vectors
- New shapes and textures can be obtained through a linear combination of the shapes and textures of the *m* exemplars

$$\mathbf{S}_{mod} = \sum_{i=1}^{m} a_i \mathbf{S}_i$$
, $\mathbf{T}_{mod} = \sum_{i=1}^{m} b_i \mathbf{T}_i$, $\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} b_i = 1$.

Figure 1: Derived from a dataset of prototypical 3D scans of faces, the morphable face model contributes to two main steps in face manipulation: (1) deriving a 3D face model from a novel image, and (2) modifying shape and texture in a natural way.

From: Blanz and Vetter. 1999

Figure 8: Reconstructed 3D face of Mona Lisa (top center and right). For modifying the illumination, relative changes in color (bottom left) are computed on the 3D face, and then multiplied by the color values in the painting (bottom center). Additional warping generates new orientations (bottom right, see text), while details of the painting, such as brush strokes or cracks, are retained. From: Blanz and Vetter. 1999

From the lecture by Gabriele Sabatino «3D face recognition» in the course «Sistemi Biometrici» by Professor Michele Nappi – University of Salerno

. . .

3D features

- 3D face recognition algorithms often work on local and global curvature of the face model.
- In particular, it is possible to extract the information concerning the shape of a 3D • face by analyzing the local curvature of the surface.
- Examples:

õ

Crest Lines: selecting areas with the greatest curvature Local Curvature: representing the local curvature with a color Local Features: segmenting the face into regions of interest

(a) Crest lines

- Alignment can be performed using landmarks
- Find a finite number of characteristic points of the face (eye corners, nose tip, 1) center of the mouth, etc.).
- 2) Align faces (rotation, translation, scaling) by minimizing the distance between corresponding points

Points can be located on the 2D image or directly on the 3D model.

3D alignment: fine

- Alignment between models is often required: the ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three dimensional models when an initial estimate of the relative pose is known.
- The ICP algorithm (Iterative ClosestPoint) is based on the calculation of "volume difference" between two 3D surfaces.
 - Given two 3D surfaces:

- 1. Find an initial match between the two surfaces (mapping of points, surfaces, lines, curves)
- 2. Compute the distance between the two surfaces by the least squares method
- 3. Compute the transformation which minimizes such distance
- 4. Perform the transformation and reiterate the procedure until the distance is less than a threshold.

ICP is very accurate but computationally expensive and does not always converge to the optimal solution

- b) Projection of geometry from 3D space to a 2D space.
- c) Generation of the normal map.

Normal maps are commonly stored as regular RGB images where the RGB components correspond to the X, Y, and Z coordinates, respectively, of the surface normal.

La length of the vector component is represented by the intensity of the color (e.g., if a unit vector n_x is very long then the pixel will have a very high intensity of red)

• Reading and processing a 2D image is much faster than reading and processing a 3Dmodel .

• Each pixel of the difference map represents the angular distance between two normal maps in that point.

- Facegen Modeller is a commercial tool able to generate the 3D model of the face of an individual "instrumented" with an underlying structure capable of simulating the "dynamics" of the face.
- As we have shown, the algorithm is based on fitting a model "generic" (morphable-model) to the shape and color of the final model of the subject to be captured.
- The adaptation of the morphable model to the final model is driven by a set of facial features extracted directly from the photos.

- Morphable-models are a powerful tool, allowing you to generate synthetic facial expressions
- Synthetic facial expressions can be used to obtain a good approximation or real facial expressions that an individual may have during the process of acquisition, and can be used in some cases to add samples to the gallery or to reproduce probe expression on the fly ...

- Method proposed by Berretti, Del Bimbo and Pala in 2010
- Stuff for next slides taken from:

S. Berretti, A. Del Bimbo, P. Pala. "3D Face Recognition using iso-Geodesic Stripes," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol.32, no.12, pp.2162-2177, December 2010.

Preliminary considerations:

- 3D face models are insensitive to illumination and pose changes but ...
- ... they are even more sensitive than 2D images to face expressions
- in presence of an expression change, point positions on the 3D face surface can exhibit large variations.

Important observations:

- geodesic distances (we can assume that the geodesic is the shortest path between two points in a curved space) are slightly affected by changes of facial expressions:
- the geometry of convex face regions is less affected by changes of facial expressions than concave regions.

- 3D face recognition is computationally expensive.
- Some studies have demonstrated that the Euclidean and geodesic distances and the angles between as many as 47 fiducial points may suffice to capture most of relevant facial information...
- ... however in practice automatic detection of fiducial points is difficult ...
- ... and the full 3D face surface information must be exploited for matching.
- The conversion of 3D scans to efficient and meaningful descriptors of face structure is crucial to perform fast processing and particularly to permit indexing over large datasets for identification.

- In this approach, all the points of the face are taken into account so that the complete geometrical information of the 3D face model is exploited.
- The relevant information is encoded into a compact representation in the form of a graph and face recognition is finally reduced to matching the graphs.
- Face graphs have a fixed number of nodes, that respectively represent iso-geodesic facial stripes of equal width and increasing distance from the nose tip.
- Arcs between pairs of nodes are annotated with descriptors referred to as *3D Weighted Walkthroughs* (3DWWs), that capture the mutual spatial displacement between all the pairs of points of the corresponding stripes and show smooth changes of their values as the positions of face points change.
- This representation has the great advantage of a very efficient computation of face descriptors and a very efficient matching operation for face recognition.
- · The method obtained the best ranking at the SHREC 2008 contest

Weighted Walkthroughs in 2D and 3D

- In a two-dimensional Cartesian reference system with X, Y coordinate axes, given two generic points $a = (x_a; y_a)$ and $b = (x_b; y_b)$, their projections on each of the two axes can take three different orders (b with respect to a): *before*, *coincident*, or *after*, for a total number of nine possible cases of two-dimensional displacements between a and b.
- Each displacement can be encoded by a pair of indexes $\langle i, j \rangle$, with *i* and *j* taking values in $\{-1, 0, +1\}$:

	-1	$x_b < x_a$		-1	$y_b < y_a$
$i = \langle$	0	$x_b = x_a$	$j = \langle$	0	$y_b = y_a$
	+1	$x_b > x_a$		+1	$y_b > y_a$,

- A displacement can be regarded as a *walkthrough* from *a* to *b*
 - Given two continuous regions *A* and *B*, points of *A* can be connected to points of *B* by walkthroughs.
 - The number of unique pairs (*a*, *b*) with *a* ∈ *A* and *b* ∈ *B* that are connected by the same walkthrough <*i*, *j*> can be measured and is denoted as w_{i,j} (*A*,*B*)
 - The 3×3 matrix w(A,B) of the weights is referred to as 2D Weighted Walkthrough (2DWW), and can be used to model the relative displacement between the two sets.
 - Intuitively, 2D Weighted Walkthroughs can measure the mutual spatial distributions of the masses of two 2D regions.
 - Extension to 3D of the above takes to the definition of 3DWW

- Directional Indexes can be directly derived from the weights of the 3DWW matrix.
- six directional indexes based on the *corner weights* of w(A, B):
 - $w_H = w_{1,1,1} + w_{1,-1,1} + w_{1,1,-1} + w_{1,-1,-1}$
 - $w_V = w_{-1,1,1} + w_{1,1,1} + w_{-1,1,-1} + w_{1,1,-1}$
 - $w_D = w_{1,1,1} + w_{1,-1,1} + w_{-1,1,1} + w_{-1,-1,1}$ (3)
 - $w_{XY} = w_{-1,-1,1} + w_{1,1,1} + w_{-1,-1,-1} + w_{1,1,-1}$

that express the percentage of pairs of points (a, b), such that b is on the right of a, b is above a and b is in front of a (respectively w_H, w_V , and w_D), and the percentage of pairs of points (a, b), that are distributed along the XY, XZ and YZ diagonal planes of the 3D space (respectively w_{XY}, w_{XZ} , and w_YZ);

-	six	directional	indexes	based	on	inner	weights	of	w(A, I)	3):	
---	-----	-------------	---------	-------	----	-------	---------	----	---------	-----	--

w_{H_0}	=	$w_{0,1,1} + w_{0,-1,1} + w_{0,1,-1} + w_{0,-1,-1}$	L
w_{V_0}	=	$w_{1,0,1} + w_{-1,0,1} + w_{-1,0,-1} + w_{1,0,-1}$	1
w_{D_0}	=	$w_{1,1,0} + w_{1,-1,0} + w_{-1,1,0} + w_{-1,-1,0}$)
w_{HV_0}	=	$w_{0,0,1} + w_{0,0,-1}$	(4)
w_{HD_0}	=	$w_{0,1,0} + w_{0,-1,0}$	
w_{VD_0}	=	$w_{1,0,0} + w_{-1,0,0}$,	

that express the percentage of pairs of points (a, b), that are aligned along the X, Y and Z axes (respectively w_{H_0}, w_{V_0} , and w_{D_0}), and the percentage of pairs of points (a, b), that are aligned along the XY, XZ and YZ axes (respectively w_{HV_0}, w_{HD_0} , and w_{VD_0}).

Iso-geodesic stripes

- The mutual displacement between each pair of stripes is measured by computing the 3DWWs between all the pairs of points of the two stripes.
- Face stripes are obtained by:
- computing the normalized geodesic distance $\bar{\gamma}$ between each face point and the nose tip (using the Dijkstra's algorithm applied to the points of the surface).
- quantizing $\bar{\gamma}$ values into N intervals $c_1, ..., c_N$, so that the *i*-th stripe collects all the face points that have values of $\bar{\gamma}$ within the interval c_i
- the normalization factor is the Euclidean eyes-to-nose distance (i.e., sum of distances between the nose tip and the two endocanthions): this guarantees invariance with respect to scaling and expression changes.

Anthropometric landmarks: Exocanthion (ex), endocanthion (en), palpebrale superius (ps), inferius (pi), and center of pupil

3Dww features

Under appropriate design choices, face partitioning into iso-geodesic stripes of equal width and calculation of 3DWWs between stripes provides an effective representation of 3D faces allowing to distinguish facial differences due to different facial traits of different individuals from differences induced by facial expressions of the same individual.

(a) Sample face models (stripes 4 and 7 evidenced). B, C: Models of the same individual with neutral and smiling expression; A: Model of a different individual with neutral expression. (b) Projections of the pairs of face stripes on the coordinate planes. (c) Measures of 3DWW directional indexes w_H , w_V , w_D for the lower part of the pair of stripes of each model. w_H , w_V , w_D are three aggregate measures that can be extracted from w(A, B) that express the percentage of pairs of points (a; b), such that b is on the right of a, b is above a and b is in front of a respectively.

3DWW features

........

1. Geodesic distances between two facial points keep sufficiently stable under expression changes → the large majority of the points of each stripe still remain within the same stripe, even under facial expression changes.

- 2. Only few parts of the face are affected by deformations due to expressions. If P_1 and P_2 are two generic points on the 3D face surface with neutral expression, and $P'_1 = P_1 + \Delta P_1$ and $P'_2 = P_2 + \Delta P_2$ are the new points under a generic expression, the displacement between P'_1 and P'_2 is: $(P'_2 P'_1) = (P_2 P_1) + (\Delta P_2 \Delta P_1)$
 - the two terms account for the displacement $(P_2 P_1)$ on the neutral face—that depends on the original face geometry—and the deformation of the face geometry due to the expression ($\Delta P_2 \Delta P_1$).
 - due to the constrained elasticity of the skin, neighbor points can be assumed to feature very similar motion vectors for moderate facial expressions in most parts of the face; according to this, for all these points the term (Δ P2 Δ P1) is negligible and the mutual displacement between the two points is mainly determined by the geometry of the neutral face.
 - this property is preserved by 3DWWs that provide an integral measure of displacements between pairs of points.
- 3. Due to the property of continuity of 3DWWs, small variations of the mutual displacement between a limited number of points yield small variations of the 3DWWs descriptor.

3DWW features

- Experiments show that use of 9 stripes of width 1cm yields good invariance to facial expressions of the same individual and discrimination between different individuals.
- To account for the larger deformation of the mouth area with respect to the nose area, each stripe is partitiones into three parts *lower* (L), *upper-left* (UL) and *upper-right* (UR) with respect to the coordinates of the nose tip.
- Iso-geodesic stripes and 3DWW computed between pairs of stripes (*inter-stripe* 3DWW) and between each stripe and itself (*intra-stripe* 3DWW), are collected into a a graph representation where stripes are used to label the graph nodes and 3DWWs to label the N(N + 1)/2 resulting graph edges.
- The similarity between two 3D faces reduces to matching their corresponding graphs. Actually, since there is an unambiguous ordering of stripes from the nose tip to the border of the face model, the graph matching problem is reduced to the computation of a distance between multidimensional vectors, by comparing homologous stripe pairs.

Matching of two 3D face graph models for the *upper-left* part of the face. Matching distances between pairs of stripes in the two models are reported.

For homologous pairs of stripes in two faces, a distance *D* that accounts for how much the spatial distributions between points of the two stripes differ from each other, can be defined directly from the values of the differences between corresponding directional indexes:

$$\begin{split} \mathcal{D}(w,w') &= \ \lambda_H |w_H - w'_H| + \lambda_V |w_V - w'_V| + \lambda_D |w_D - w'_D| \\ &+ \lambda_{YY} |w_{YY} - w'_{YY}| + \lambda_{XZ} |w_{XZ} - w'_{YZ}| \\ &+ \lambda_{YC} |w_{YZ} - w'_{YZ}| + \lambda_{H_0} |w_{H_0} - w'_{H_0}| \\ &+ \lambda_V |w_{V_0} - w'_{V_0}| + \lambda_{D_0} |w_{D_0} - w'_{D_0}| \\ &+ \lambda_{HV_0} |w_{HV_0} - w'_{HV_0}| + \lambda_{HD_0} |w_{HD_0} - w'_{HD_0}| \\ &+ \lambda_{VD_0} |w_{VD_0} - w'_{VD_0}| , \end{split}$$

being λ_H , λ_V , λ_D , λ_{XY} , λ_{XZ} , λ_{YZ} , λ_{H_0} , λ_{U_0} , λ_{D_0} , λ_{H_0} , λ_{H_0} , λ_{U_0} , a combination of non-negative numbers with sum equal to 1. Values of λ -parameters have been set so as to give the maximum relevance to directional indexes that encode Z-displacements (w_D , w_{YZ}), and minimum relevance to the alignment indexes.

ō

• The measure of the similarity between two face models represented through the graphs P and G with nodes p_k and g_k is derived as :

$$\begin{split} \mu(P,G) &= \frac{\alpha}{N_P} \cdot \sum_{k=1}^{N_P} \mathcal{D}(w(p_k,p_k),w(g_k,g_k)) \\ &+ \frac{2(1-\alpha)}{N_P(N_P-1)} \cdot \sum_{k=1}^{N_P} \sum_{h=1}^{k-1} \mathcal{D}(w(p_k,p_h),w(g_k,g_h)) \end{split}$$

Differences between faces of two individuals are measured by computing the 3DWW
for each pair of stripes, separately in the three face parts for each face, and then
comparing the 3DWWs of homologous pairs of the two faces. The final dissimilarity
measure is obtained by averaging distances in the three parts.

- Face scans and distances between stripes 4 and 7 (for *UL*, *UR* and *L* parts): scans *A*, *B*, *C* and *D* show the same person under different facial expressions (from neutral to laugh); scan *E* shows a different person with neutral expression. It can be noticed that different expressions of the same person do not alter significantly the values of the distances. Larger differences are found instead between different persons.
- In particular, stripes 4 and 7 are considered in that stripe 4 typically covers a part of the face that remains almost unchanged under expression changes, and stripe 7 instead includes points that typically change their position with facial expressions.

....

Some references

- R. Polikar. The Wavelet Tutorial Part I. <u>http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html</u> (http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html)
- Wiskott, L., Fellous, J. M., Kuiger, N., & Von Der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 19(7), 775-779.
- Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 24(7), 971-987.
- Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 28(12), 2037-2041.
- R. Wolfe. Teaching Texture Mapping Visually. <u>https://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe_mapping.pdf</u>
- Marton, Z. C., Rusu, R. B., & Beetz, M. (2009, May). On fast surface reconstruction methods for large and noisy point clouds. In *Robotics and Automation, 2009. ICRA'09. IEEE International Conference on* (pp. 3218-3223). IEEE.
- R. Schettini, A. Colombo, C. Cusano. Multimodal face recognition. http://www.ivl.disco.unimib.it/Seminari/IBM-volti.pdf
- Atick, J. J., Griffin, P. A., & Redlich, A. N. (1996). Statistical approach to shape from shading: Reconstruction of three-dimensional face surfaces from single two-dimensional images. *Neural Computation*, 8(6), 1321-1340.

Some references

- V. Blanz and T. Vetter. A Morphable Model for the Synthesis of 3D Faces SIGGRAPH'99 Conference Proceedings (pp 187-194). http://gravis.cs.unibas.ch/Sigg99.html
- Kemelmacher-Shlizerman, I., & Basri, R. (2011). 3d face reconstruction from a single image using a single reference face shape. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 33(2), 394-405.
- Toderici G., G. Evangelopoulos, T. Fang, T. Theoharis and I. Kakadiaris, UHDB11 Database for 3D-2D Face Recognition, 6th Pacific Rim Symposium on Image and Video Technology (PSIVT), October 2013, Guanajuato, Mexico.
- Blanz, V., & Vetter, T. (2003). Face recognition based on fitting a 3D morphable model. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 25(9), 1063-1074.
- X. Lu, D. Colbry, A.K. Jain, "Three-Dimensional Model Based Face Recognition, *In Proc. International Conference on Pattern Recognition*,
- 2004.
- X. Lu, A.K. Jain, D. Colbry, "Matching 2.5D Face Scans to 3D Models", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
- 28, no. 1, pp. 31-43, 2006.
- S. Berretti, A. Del Bimbo, P. Pala. "3D Face Recognition using iso-Geodesic Stripes," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol.32, no.12, pp.2162-2177, December 2010.